📄 d5r4.cpp
字号:
#include "iostream.h"
#include "math.h"
double func(double x)
{
return (x * x) * (x * x - 2.0) * sin(x);
}
void chebft(double a, double b, double c[], int n)
{
int k,nmax = 50;
double f[51];
const double pi = 3.14159265358979;
double bma,bpa,y,sum,fac;
bma = 0.5 * (b - a);
bpa = 0.5 * (b + a);
for (k = 1; k<=n; k++)
{
y = cos(pi * (k - 0.5) / n);
f[k] = func(y * bma + bpa);
}
fac = 2.0 / n;
for (int j = 1; j<=n; j++)
{
sum = 0.0;
for (k = 1; k<=n; k++)
{
sum = sum + f[k] * cos((pi * (j - 1)) * ((k - 0.5) / n));
}
c[j] = fac * sum;
}
}
void main()
{
//program d5r4
//driver for routine chebft
int nval = 40;
double x,y,t0,t1,f,pio2 = 1.5707963;
double a,b,dum,term,eps = 0.000001;
double c[41];
a = -pio2;
b = pio2;
chebft(a, b, c, nval);
//test result
cout<<endl;
cout<<"how many terms in chebyshev evaluation?"<<endl;
//input mval , between 1 and 40, mval=0 to end
int mval = 20;
cout<<mval<<endl;
if ((mval <= 0) || (mval > nval))
{
return;
}
cout<<" x actual chebyshev fit"<<endl;
cout.setf(ios::fixed|ios::right);
cout.precision(6);
for (int i = -8; i<=8; i++)
{
x = i * pio2 / 10.0;
y = (x - 0.5 * (b + a)) / (0.5 * (b - a));
//evaluate chebyshev polynomial without using
//routine chebev
t0 = 1.0;
t1 = y;
f = c[2] * t1 + c[1] * 0.5;
for (int j = 3; j<=mval; j++)
{
dum = t1;
t1 = 2.0 * y * t1 - t0;
t0 = dum;
term = c[j] * t1;
f = f + term;
}
cout.width(14);
cout<<x;
cout.width(14);
cout<<func(x);
cout.width(14);
cout<<f<<endl;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -