⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 synchronizerlibrary.bsv

📁 MIT编写的OFDM仿真程序
💻 BSV
字号:
//----------------------------------------------------------------------//// The MIT License // // Copyright (c) 2007 Alfred Man Cheuk Ng, mcn02@mit.edu // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use,// copy, modify, merge, publish, distribute, sublicense, and/or sell// copies of the Software, and to permit persons to whom the// Software is furnished to do so, subject to the following conditions:// // The above copyright notice and this permission notice shall be// included in all copies or substantial portions of the Software.// // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR// OTHER DEALINGS IN THE SOFTWARE.//----------------------------------------------------------------------//import Complex::*;import ComplexLibrary::*;import CORDIC::*;import DataTypes::*;import FIFOF::*;import FixedPoint::*;import FixedPointLibrary::*;import FPComplex::*;import SParams::*;import ShiftRegs::*;import Vector::*;import Parameters::*;// convert FPComplex to single bit complexfunction Complex#(Bit#(1)) toSingleBitCmplx(FPComplex#(ai,af) a)  provisos (Add#(1,x,ai), Add#(ai,af,TAdd#(ai,af)));      return cmplx(pack(a.rel < 0), pack(a.img < 0));endfunction // Complex// for single bit multiply, treat 1 = -1, 0 = +1function Bit#(2) singleBitMult(Bit#(1) x, Bit#(1) y);      return {x^y,1};endfunction// for complex single bit multiplyfunction Complex#(Bit#(3)) singleBitCmplxMult(Complex#(Bit#(1)) a, Complex#(Bit#(1)) b);      let rel = signExtend(singleBitMult(a.rel, b.rel)) - signExtend(singleBitMult(a.img, b.img));      let img = signExtend(singleBitMult(a.rel, b.img)) + signExtend(singleBitMult(a.img, b.rel));      return cmplx(rel, img);endfunction// for complex single bit conjfunction Complex#(Bit#(1)) singleBitCmplxConj(Complex#(Bit#(1)) a);      return cmplx(a.rel, invert(a.img));endfunction // Complex// for complex single bit multiplyfunction Complex#(Bit#(rsz)) cmplxSignExtend(Complex#(Bit#(asz)) a)  provisos (Add#(xxA,asz,rsz));      let rel = signExtend(a.rel);      let img = signExtend(a.img);      return cmplx(rel, img);endfunction // Complex// for complex modulus = rel^2 + img^2, ri = 2ai + 1, rf = 2affunction Bit#(ri)  cmplxModSq(Complex#(Bit#(ai)) a)  provisos (Add#(ai,ai,ci), Add#(1,ci,ri), Add#(xxA,ai,ri));      return ((signExtend(a.rel) * signExtend(a.rel))  + (signExtend(a.img) * signExtend(a.img)));endfunction // FixedPoint// single bit cross correlationfunction Complex#(Bit#(TAdd#(logn,3))) singleBitCrossCorrelation(Vector#(n, Complex#(Bit#(1))) v1, Vector#(n, Complex#(Bit#(1))) v2)  provisos (Log#(n,logn), Add#(logn,3,TAdd#(logn,3)), Add#(1,xxA,n));      Vector#(n, Complex#(Bit#(1))) v2Conj = Vector::map(singleBitCmplxConj, v2);      Vector#(n, Complex#(Bit#(3))) multV = Vector::zipWith(singleBitCmplxMult, v1, v2Conj);      Vector#(n, Complex#(Bit#(TAdd#(logn,3)))) extendedResultV = Vector::map(cmplxSignExtend, multV);      Complex#(Bit#(TAdd#(logn,3))) result = Vector::fold(\+ ,extendedResultV); //build a binary tree structure      return result;endfunction // Complex	          // complex conjugatefunction Complex#(a) cmplxConj(Complex#(a) x)  provisos (Arith#(a));      return cmplx(x.rel, negate(x.img));endfunction // Complex// for fixedpoint complex multiplication function FPComplex#(ri,rf) fpcmplxMult(FPComplex#(ai,af) a, FPComplex#(bi,bf) b)        provisos (Add#(ai,bi,ci),  Add#(af,bf,rf), Add#(TAdd#(ai,af), TAdd#(bi,bf), TAdd#(ci,rf)), 		  Arith#(FixedPoint#(ri,rf)), Add#(1,ci,ri), Add#(1, TAdd#(ci,rf), TAdd#(ri,rf)));      let rel = fxptSignExtend(fxptMult(a.rel, b.rel)) - fxptSignExtend(fxptMult(a.img, b.img));      let img = fxptSignExtend(fxptMult(a.rel, b.img)) + fxptSignExtend(fxptMult(a.img, b.rel));      return cmplx(rel, img);endfunction // Complex//for fixedpoint complex signextendfunction FPComplex#(ri,rf) fpcmplxSignExtend(FPComplex#(ai,af) a)  provisos (Add#(xxA,ai,ri), Add#(fdiff,af,rf), Add#(xxC,TAdd#(ai,af),TAdd#(ri,rf)));      return cmplx(fxptSignExtend(a.rel), fxptSignExtend(a.img));endfunction // Complex//for fixedpoint complex truncatefunction FPComplex#(ri,rf) fpcmplxTruncate(FPComplex#(ai,af) a)  provisos (Add#(xxA,ri,ai), Add#(xxB,rf,af), Add#(xxC,TAdd#(ri,rf),TAdd#(ai,af)));      return cmplx(fxptTruncate(a.rel), fxptTruncate(a.img));endfunction // Complex// for fixedpoint complex modulus = rel^2 + img^2, ri = 2ai + 1, rf = 2affunction FixedPoint#(ri,rf)  fpcmplxModSq(FPComplex#(ai,af) a)  provisos (Add#(ai,ai,ci), Add#(af,af,rf), Add#(TAdd#(ai,af), TAdd#(ai,af), TAdd#(ci,rf)),	    Arith#(FixedPoint#(ri,rf)), Add#(1,ci,ri), Add#(1, TAdd#(ci,rf), TAdd#(ri,rf)));      return (fxptSignExtend(fxptMult(a.rel, a.rel)) + fxptSignExtend(fxptMult(a.img, a.img)));endfunction // FixedPoint// generic function for cross correlationfunction FPComplex#(TAdd#(logn,ri),rf) crossCorrelation(Vector#(n, FPComplex#(vi,vf)) v1, Vector#(n, FPComplex#(vi,vf)) v2)  provisos (Add#(vi,vi,xi), Add#(vf,vf,rf), Add#(TAdd#(vi,vf), TAdd#(vi,vf),TAdd#(xi,rf)),	    Arith#(FixedPoint#(vi,vf)), Arith#(FixedPoint#(ri,rf)), 	    Add#(1,xi,ri), Add#(1,TAdd#(xi,rf),TAdd#(ri,rf)), Log#(n,logn),	    Add#(xxA,ri,TAdd#(logn,ri)), Add#(xxC,TAdd#(ri,rf),TAdd#(TAdd#(logn,ri),rf)),	    Add#(1,yy,n),Arith#(FPComplex#(TAdd#(logn,ri),rf))	    );      Vector#(n, FPComplex#(vi,vf)) v2Conj = Vector::map(cmplxConj, v2);      Vector#(n, FPComplex#(ri,rf)) multV = Vector::zipWith(fpcmplxMult, v1, v2Conj);      Vector#(n, FPComplex#(TAdd#(logn,ri),rf)) extendedResultV = Vector::map(fpcmplxSignExtend, multV);      FPComplex#(TAdd#(logn,ri),rf) result = Vector::fold(\+ ,extendedResultV); //build a binary tree structure      return result;endfunction // Complexfunction Vector#(m,a) insertCP0(Vector#(n,a) inVec)   provisos (Mul#(4,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m));   Vector#(cpsz,a) cp = takeTail(inVec);   Vector#(m,a) outVec = append(cp,inVec);   return outVec;endfunctionfunction Vector#(m,a) insertCP1(Vector#(n,a) inVec)   provisos (Mul#(8,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m));   Vector#(cpsz,a) cp = takeTail(inVec);   Vector#(m,a) outVec = append(cp,inVec);   return outVec;endfunctionfunction Vector#(m,a) insertCP2(Vector#(n,a) inVec)   provisos (Mul#(16,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m));   Vector#(cpsz,a) cp = takeTail(inVec);   Vector#(m,a) outVec = append(cp,inVec);   return outVec;endfunctionfunction Vector#(m,a) insertCP3(Vector#(n,a) inVec)   provisos (Mul#(32,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m));   Vector#(cpsz,a) cp = takeTail(inVec);   Vector#(m,a) outVec = append(cp,inVec);   return outVec;endfunction(* synthesize *)module mkAutoCorr_DelayIn(ShiftRegs#(SSLen, FPComplex#(SyncIntPrec,SyncFractPrec)));   ShiftRegs#(SSLen,FPComplex#(SyncIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec;   return shiftRegs;endmodule(* synthesize *)module mkAutoCorr_CorrSub(ShiftRegs#(SSLen, FPComplex#(MulIntPrec,SyncFractPrec)));   ShiftRegs#(SSLen,FPComplex#(MulIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec;   return shiftRegs;endmodule(* synthesize *)module mkAutoCorr_ExtDelayIn(ShiftRegs#(LSLSSLen, FPComplex#(SyncIntPrec,SyncFractPrec)));   ShiftRegs#(LSLSSLen,FPComplex#(SyncIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec;   return shiftRegs;endmodule(* synthesize *)module mkAutoCorr_ExtCorrSub(ShiftRegs#(LSLSSLen, FPComplex#(MulIntPrec,SyncFractPrec)));   ShiftRegs#(LSLSSLen,FPComplex#(MulIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec;   return shiftRegs;endmodule(* synthesize *)module mkTimeEst_CoarPowSub(ShiftRegs#(SSLen, FixedPoint#(MulIntPrec,SyncFractPrec)));   ShiftRegs#(SSLen,FixedPoint#(MulIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec;   return shiftRegs;endmodule(* synthesize *)module mkTimeEst_CoarTimeSub(ShiftRegs#(CoarTimeAccumDelaySz, Bool));   ShiftRegs#(CoarTimeAccumDelaySz, Bool) shiftRegs <- mkCirShiftRegsNoGetVec;   return shiftRegs;endmodule(* synthesize *)module mkTimeEst_FineDelaySign(ShiftRegs#(FineTimeCorrDelaySz, Complex#(Bit#(1))));   ShiftRegs#(FineTimeCorrDelaySz, Complex#(Bit#(1))) shiftRegs <- mkShiftRegs;   return shiftRegs;endmodule(* synthesize *)module mkFreqEst_FreqOffAccumSub(ShiftRegs#(FreqMeanLen, FixedPoint#(SyncIntPrec,SyncFractPrec)));   ShiftRegs#(FreqMeanLen, FixedPoint#(SyncIntPrec,SyncFractPrec)) shiftRegs <- mkShiftRegs;   return shiftRegs;endmodule /*   // try to instantiate a crosscorrelation module for 160 elements, otherwise the code is too complicate to compile(* noinline *)function Complex#(Bit#(FineTimeCorrResSz)) crossCorrelation160(Vector#(FineTimeCorrSz, Complex#(Bit#(1))) v1, 							       Vector#(FineTimeCorrSz, Complex#(Bit#(1))) v2);       Vector#(FineTimeCorrSz, Complex#(Bit#(1))) v2Conj = Vector::map(singleBitCmplxConj, v2);      Vector#(FineTimeCorrSz, Complex#(Bit#(3))) multV = Vector::zipWith(singleBitCmplxMult, v1, v2Conj);      Vector#(FineTimeCorrSz, Complex#(Bit#(FineTimeCorrResSz))) extendedResultV = Vector::map(cmplxSignExtend, multV);      Complex#(Bit#(FineTimeCorrResSz)) result = Vector::fold(\+ ,extendedResultV); //build a binary tree structure      return result;endfunction // Complex*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -