📄 synchronizerlibrary.bsv
字号:
//----------------------------------------------------------------------//// The MIT License // // Copyright (c) 2007 Alfred Man Cheuk Ng, mcn02@mit.edu // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use,// copy, modify, merge, publish, distribute, sublicense, and/or sell// copies of the Software, and to permit persons to whom the// Software is furnished to do so, subject to the following conditions:// // The above copyright notice and this permission notice shall be// included in all copies or substantial portions of the Software.// // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR// OTHER DEALINGS IN THE SOFTWARE.//----------------------------------------------------------------------//import Complex::*;import ComplexLibrary::*;import CORDIC::*;import DataTypes::*;import FIFOF::*;import FixedPoint::*;import FixedPointLibrary::*;import FPComplex::*;import SParams::*;import ShiftRegs::*;import Vector::*;import Parameters::*;// convert FPComplex to single bit complexfunction Complex#(Bit#(1)) toSingleBitCmplx(FPComplex#(ai,af) a) provisos (Add#(1,x,ai), Add#(ai,af,TAdd#(ai,af))); return cmplx(pack(a.rel < 0), pack(a.img < 0));endfunction // Complex// for single bit multiply, treat 1 = -1, 0 = +1function Bit#(2) singleBitMult(Bit#(1) x, Bit#(1) y); return {x^y,1};endfunction// for complex single bit multiplyfunction Complex#(Bit#(3)) singleBitCmplxMult(Complex#(Bit#(1)) a, Complex#(Bit#(1)) b); let rel = signExtend(singleBitMult(a.rel, b.rel)) - signExtend(singleBitMult(a.img, b.img)); let img = signExtend(singleBitMult(a.rel, b.img)) + signExtend(singleBitMult(a.img, b.rel)); return cmplx(rel, img);endfunction// for complex single bit conjfunction Complex#(Bit#(1)) singleBitCmplxConj(Complex#(Bit#(1)) a); return cmplx(a.rel, invert(a.img));endfunction // Complex// for complex single bit multiplyfunction Complex#(Bit#(rsz)) cmplxSignExtend(Complex#(Bit#(asz)) a) provisos (Add#(xxA,asz,rsz)); let rel = signExtend(a.rel); let img = signExtend(a.img); return cmplx(rel, img);endfunction // Complex// for complex modulus = rel^2 + img^2, ri = 2ai + 1, rf = 2affunction Bit#(ri) cmplxModSq(Complex#(Bit#(ai)) a) provisos (Add#(ai,ai,ci), Add#(1,ci,ri), Add#(xxA,ai,ri)); return ((signExtend(a.rel) * signExtend(a.rel)) + (signExtend(a.img) * signExtend(a.img)));endfunction // FixedPoint// single bit cross correlationfunction Complex#(Bit#(TAdd#(logn,3))) singleBitCrossCorrelation(Vector#(n, Complex#(Bit#(1))) v1, Vector#(n, Complex#(Bit#(1))) v2) provisos (Log#(n,logn), Add#(logn,3,TAdd#(logn,3)), Add#(1,xxA,n)); Vector#(n, Complex#(Bit#(1))) v2Conj = Vector::map(singleBitCmplxConj, v2); Vector#(n, Complex#(Bit#(3))) multV = Vector::zipWith(singleBitCmplxMult, v1, v2Conj); Vector#(n, Complex#(Bit#(TAdd#(logn,3)))) extendedResultV = Vector::map(cmplxSignExtend, multV); Complex#(Bit#(TAdd#(logn,3))) result = Vector::fold(\+ ,extendedResultV); //build a binary tree structure return result;endfunction // Complex // complex conjugatefunction Complex#(a) cmplxConj(Complex#(a) x) provisos (Arith#(a)); return cmplx(x.rel, negate(x.img));endfunction // Complex// for fixedpoint complex multiplication function FPComplex#(ri,rf) fpcmplxMult(FPComplex#(ai,af) a, FPComplex#(bi,bf) b) provisos (Add#(ai,bi,ci), Add#(af,bf,rf), Add#(TAdd#(ai,af), TAdd#(bi,bf), TAdd#(ci,rf)), Arith#(FixedPoint#(ri,rf)), Add#(1,ci,ri), Add#(1, TAdd#(ci,rf), TAdd#(ri,rf))); let rel = fxptSignExtend(fxptMult(a.rel, b.rel)) - fxptSignExtend(fxptMult(a.img, b.img)); let img = fxptSignExtend(fxptMult(a.rel, b.img)) + fxptSignExtend(fxptMult(a.img, b.rel)); return cmplx(rel, img);endfunction // Complex//for fixedpoint complex signextendfunction FPComplex#(ri,rf) fpcmplxSignExtend(FPComplex#(ai,af) a) provisos (Add#(xxA,ai,ri), Add#(fdiff,af,rf), Add#(xxC,TAdd#(ai,af),TAdd#(ri,rf))); return cmplx(fxptSignExtend(a.rel), fxptSignExtend(a.img));endfunction // Complex//for fixedpoint complex truncatefunction FPComplex#(ri,rf) fpcmplxTruncate(FPComplex#(ai,af) a) provisos (Add#(xxA,ri,ai), Add#(xxB,rf,af), Add#(xxC,TAdd#(ri,rf),TAdd#(ai,af))); return cmplx(fxptTruncate(a.rel), fxptTruncate(a.img));endfunction // Complex// for fixedpoint complex modulus = rel^2 + img^2, ri = 2ai + 1, rf = 2affunction FixedPoint#(ri,rf) fpcmplxModSq(FPComplex#(ai,af) a) provisos (Add#(ai,ai,ci), Add#(af,af,rf), Add#(TAdd#(ai,af), TAdd#(ai,af), TAdd#(ci,rf)), Arith#(FixedPoint#(ri,rf)), Add#(1,ci,ri), Add#(1, TAdd#(ci,rf), TAdd#(ri,rf))); return (fxptSignExtend(fxptMult(a.rel, a.rel)) + fxptSignExtend(fxptMult(a.img, a.img)));endfunction // FixedPoint// generic function for cross correlationfunction FPComplex#(TAdd#(logn,ri),rf) crossCorrelation(Vector#(n, FPComplex#(vi,vf)) v1, Vector#(n, FPComplex#(vi,vf)) v2) provisos (Add#(vi,vi,xi), Add#(vf,vf,rf), Add#(TAdd#(vi,vf), TAdd#(vi,vf),TAdd#(xi,rf)), Arith#(FixedPoint#(vi,vf)), Arith#(FixedPoint#(ri,rf)), Add#(1,xi,ri), Add#(1,TAdd#(xi,rf),TAdd#(ri,rf)), Log#(n,logn), Add#(xxA,ri,TAdd#(logn,ri)), Add#(xxC,TAdd#(ri,rf),TAdd#(TAdd#(logn,ri),rf)), Add#(1,yy,n),Arith#(FPComplex#(TAdd#(logn,ri),rf)) ); Vector#(n, FPComplex#(vi,vf)) v2Conj = Vector::map(cmplxConj, v2); Vector#(n, FPComplex#(ri,rf)) multV = Vector::zipWith(fpcmplxMult, v1, v2Conj); Vector#(n, FPComplex#(TAdd#(logn,ri),rf)) extendedResultV = Vector::map(fpcmplxSignExtend, multV); FPComplex#(TAdd#(logn,ri),rf) result = Vector::fold(\+ ,extendedResultV); //build a binary tree structure return result;endfunction // Complexfunction Vector#(m,a) insertCP0(Vector#(n,a) inVec) provisos (Mul#(4,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m)); Vector#(cpsz,a) cp = takeTail(inVec); Vector#(m,a) outVec = append(cp,inVec); return outVec;endfunctionfunction Vector#(m,a) insertCP1(Vector#(n,a) inVec) provisos (Mul#(8,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m)); Vector#(cpsz,a) cp = takeTail(inVec); Vector#(m,a) outVec = append(cp,inVec); return outVec;endfunctionfunction Vector#(m,a) insertCP2(Vector#(n,a) inVec) provisos (Mul#(16,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m)); Vector#(cpsz,a) cp = takeTail(inVec); Vector#(m,a) outVec = append(cp,inVec); return outVec;endfunctionfunction Vector#(m,a) insertCP3(Vector#(n,a) inVec) provisos (Mul#(32,cpsz,n),Add#(xxA,cpsz,n),Add#(cpsz,n,m)); Vector#(cpsz,a) cp = takeTail(inVec); Vector#(m,a) outVec = append(cp,inVec); return outVec;endfunction(* synthesize *)module mkAutoCorr_DelayIn(ShiftRegs#(SSLen, FPComplex#(SyncIntPrec,SyncFractPrec))); ShiftRegs#(SSLen,FPComplex#(SyncIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec; return shiftRegs;endmodule(* synthesize *)module mkAutoCorr_CorrSub(ShiftRegs#(SSLen, FPComplex#(MulIntPrec,SyncFractPrec))); ShiftRegs#(SSLen,FPComplex#(MulIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec; return shiftRegs;endmodule(* synthesize *)module mkAutoCorr_ExtDelayIn(ShiftRegs#(LSLSSLen, FPComplex#(SyncIntPrec,SyncFractPrec))); ShiftRegs#(LSLSSLen,FPComplex#(SyncIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec; return shiftRegs;endmodule(* synthesize *)module mkAutoCorr_ExtCorrSub(ShiftRegs#(LSLSSLen, FPComplex#(MulIntPrec,SyncFractPrec))); ShiftRegs#(LSLSSLen,FPComplex#(MulIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec; return shiftRegs;endmodule(* synthesize *)module mkTimeEst_CoarPowSub(ShiftRegs#(SSLen, FixedPoint#(MulIntPrec,SyncFractPrec))); ShiftRegs#(SSLen,FixedPoint#(MulIntPrec,SyncFractPrec)) shiftRegs <- mkCirShiftRegsNoGetVec; return shiftRegs;endmodule(* synthesize *)module mkTimeEst_CoarTimeSub(ShiftRegs#(CoarTimeAccumDelaySz, Bool)); ShiftRegs#(CoarTimeAccumDelaySz, Bool) shiftRegs <- mkCirShiftRegsNoGetVec; return shiftRegs;endmodule(* synthesize *)module mkTimeEst_FineDelaySign(ShiftRegs#(FineTimeCorrDelaySz, Complex#(Bit#(1)))); ShiftRegs#(FineTimeCorrDelaySz, Complex#(Bit#(1))) shiftRegs <- mkShiftRegs; return shiftRegs;endmodule(* synthesize *)module mkFreqEst_FreqOffAccumSub(ShiftRegs#(FreqMeanLen, FixedPoint#(SyncIntPrec,SyncFractPrec))); ShiftRegs#(FreqMeanLen, FixedPoint#(SyncIntPrec,SyncFractPrec)) shiftRegs <- mkShiftRegs; return shiftRegs;endmodule /* // try to instantiate a crosscorrelation module for 160 elements, otherwise the code is too complicate to compile(* noinline *)function Complex#(Bit#(FineTimeCorrResSz)) crossCorrelation160(Vector#(FineTimeCorrSz, Complex#(Bit#(1))) v1, Vector#(FineTimeCorrSz, Complex#(Bit#(1))) v2); Vector#(FineTimeCorrSz, Complex#(Bit#(1))) v2Conj = Vector::map(singleBitCmplxConj, v2); Vector#(FineTimeCorrSz, Complex#(Bit#(3))) multV = Vector::zipWith(singleBitCmplxMult, v1, v2Conj); Vector#(FineTimeCorrSz, Complex#(Bit#(FineTimeCorrResSz))) extendedResultV = Vector::map(cmplxSignExtend, multV); Complex#(Bit#(FineTimeCorrResSz)) result = Vector::fold(\+ ,extendedResultV); //build a binary tree structure return result;endfunction // Complex*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -