📄 sorts.java
字号:
class RadixsortNode {
public int[] arr;
public RadixsortNode next = null;
public RadixsortNode() {
}
public RadixsortNode(int[] a) {
arr = new int[a.length];
for (int i = 0; i < a.length; i++)
arr[i] = a[i];
}
public RadixsortNode(int n) {
arr = new int[n];
}
}
@SuppressWarnings("unchecked")
public class Sorts {
public void swap(Object[] a, int e1, int e2) {
Object tmp = a[e1];
a[e1] = a[e2];
a[e2] = tmp;
}
public <T extends Comparable<? super T>> void insertionsort(T[] data) {
for (int i = 1, j; i < data.length; i++) {
T tmp = data[i];
for (j = i; j > 0 && tmp.compareTo(data[j-1]) < 0; j--)
data[j] = data[j-1];
data[j] = tmp;
}
}
public <T extends Comparable<? super T>> void selectionsort(T[] data) {
int i, j, least;
for (i = 0; i < data.length-1; i++) {
for (j = i+1, least = i; j < data.length; j++)
if (data[j].compareTo(data[least]) < 0)
least = j;
if (least != i)
swap(data,least,i);
}
}
public <T extends Comparable<? super T>> void bubblesort(T[] data) {
for (int i = 0; i < data.length-1; i++)
for (int j = data.length-1; j > i; --j)
if (data[j].compareTo(data[j-1]) < 0)
swap(data,j,j-1);
}
public <T extends Comparable<? super T>> void combsort(T[] data) {
int step = data.length;
int r, j;
while ((step = (int)(step/1.3)) > 1) // phase 1
for (j = data.length-1; j >= step; j--) {
r = j-step;
if (data[j].compareTo(data[r]) < 0)
swap(data,j,r);
}
boolean again = true;
for (int i = 0; i < data.length-1 && again; i++) // phase 2
for (j = data.length-1, again = false; j > i; --j) {
if (data[j].compareTo(data[j-1]) < 0) {
swap(data,j,j-1);
again = true;
}
}
}
public <T extends Comparable<? super T>> void Shellsort (T[] data) {
int i, j, k, h, hCnt, increments[] = new int[20];
// create an appropriate number of increments h
for (h = 1, i = 0; h < data.length; i++) {
increments[i] = h;
h = 3*h + 1;
}
// loop on the number of different increments h
for (i--; i >= 0; i--) {
h = increments[i];
// loop on the number of subarrays h-sorted in ith pass
for (hCnt = h; hCnt < 2*h; hCnt++) {
// insertion sort for subarray containing every hth element of array data
for (j = hCnt; j < data.length; ) {
T tmp = data[j];
k = j;
while (k-h >= 0 && tmp.compareTo(data[k-h]) < 0) {
data[k] = data[k-h];
k -= h;
}
data[k] = tmp;
j += h;
}
}
}
}
private <T extends Comparable<? super T>> void moveDown(T[] data, int first, int last) {
int largest = 2*first + 1;
while (largest <= last) {
if (largest < last && // first has two children (at 2*first+1 and
// 2*first+2);
data[largest].compareTo(data[largest+1]) < 0)
largest++;
if (data[first].compareTo(data[largest]) < 0) {
swap(data,first,largest); // if necessary, swap values
first = largest; // and move down;
largest = 2*first + 1;
}
else largest = last + 1;// to exit the loop: the heap property
} // isn't violated by data[first];
}
public <T extends Comparable<? super T>> void heapsort(T[] data) {
for (int i = data.length/2 - 1; i >= 0; --i)
moveDown(data,i,data.length-1);
for (int i = data.length-1; i >= 1; --i) {
swap(data,0,i);
moveDown(data,0,i-1);
}
}
private <T extends Comparable<? super T>> void quicksort(T[] data, int first, int last) {
int lower = first + 1, upper = last;
swap(data,first,(first+last)/2);
T bound = data[first];
while (lower <= upper) {
while (bound.compareTo(data[lower]) > 0)
lower++;
while (bound.compareTo(data[upper]) < 0)
upper--;
if (lower < upper)
swap(data,lower++,upper--);
else lower++;
}
swap(data,upper,first);
if (first < upper-1)
quicksort(data,first,upper-1);
if (upper+1 < last)
quicksort(data,upper+1,last);
}
public <T extends Comparable<? super T>> void quicksort(T[] data) {
if (data.length < 2)
return;
int max = 0;
// find the largest element and put it at the end of data;
for (int i = 1; i < data.length; i++)
if (data[max].compareTo(data[i]) < 0)
max = i;
swap(data,data.length-1,max); // largest el is now in its
quicksort(data,0,data.length-2); // final position;
}
public <T extends Comparable<? super T>> void insertionsort(T[] data, int first, int last) {
for (int i = first, j; i <= last; i++) {
T tmp = data[i];
for (j = i; j > 0 && tmp.compareTo(data[j-1]) < 0; j--)
data[j] = data[j-1];
data[j] = tmp;
}
}
public <T extends Comparable<? super T>> void quicksort2(T[] data, int first, int last) {
if (last - first < 30)
insertionsort(data,first,last);
else {
int lower = first + 1, upper = last;
swap(data,first,(first+last)/2);
T bound = data[first];
while (lower <= upper) {
while (bound.compareTo(data[lower]) > 0)
lower++;
while (bound.compareTo(data[upper]) < 0)
upper--;
if (lower < upper)
swap(data,lower++,upper--);
else lower++;
}
swap(data,upper,first);
if (first < upper-1)
quicksort2(data,first,upper-1);
if (upper+1 < last)
quicksort2(data,upper+1,last);
}
}
public <T extends Comparable<? super T>> void quicksort2(T[] data) {
if (data.length < 2)
return;
int max = 0;
// find the largest element and put it at the end of data;
for (int i = 1; i < data.length; i++)
if (data[max].compareTo(data[i]) < 0)
max = i;
swap(data,data.length-1,max); // largest el is now in its
quicksort2(data,0,data.length-2); // final position;
}
private Comparable[] temp; // used by merge();
private <T extends Comparable<? super T>> void merge(T[] data, int first, int last) {
int mid = (first + last) / 2;
int i1 = 0, i2 = first, i3 = mid + 1;
while (i2 <= mid && i3 <= last)
if (data[i2].compareTo(data[i3]) < 0)
temp[i1++] = data[i2++];
else temp[i1++] = data[i3++];
while (i2 <= mid)
temp[i1++] = data[i2++];
while (i3 <= last)
temp[i1++] = data[i3++];
for (i1 = 0, i2 = first; i2 <= last; data[i2++] = (T) temp[i1++]);
}
private <T extends Comparable<? super T>> void mergesort(T[] data, int first, int last) {
int mid = (first + last) / 2;
if (first < mid)
mergesort(data, first, mid);
if (mid+1 < last)
mergesort(data, mid+1, last);
merge(data, first, last);
}
public <T extends Comparable<? super T>> void mergesort(T[] data) {
if (data.length < 2)
return;
temp = new Comparable[data.length];
mergesort(data,0,data.length-1);
}
private final int radix = 10;
private final int digits = 10;
private final int bits = 31;
public void radixsort(int[] data) {
int d, j, k, factor;
Queue<Integer>[] queues = new Queue[radix]; // radix is 10;
for (d = 0; d < radix; d++)
queues[d] = new Queue<Integer>();
for (d = 1, factor = 1; d <= digits; factor *= radix, d++) {
for (j = 0; j < data.length; j++)
queues[(data[j] / factor) % radix].enqueue(data[j]);
for (j = k = 0; j < radix; j++)
while (!queues[j].isEmpty())
data[k++] = queues[j].dequeue();
}
}
public void bitRadixsort(int[] data, int b) {
int pow2b = 1;
pow2b <<= b;
int i, j, k, pos = 0, mask = pow2b-1;
int last = (bits % b == 0) ? (bits/b) : (bits/b + 1);
Queue<Integer>[] queues = new Queue[pow2b];
for (i = 0; i < pow2b; i++)
queues[i] = new Queue<Integer>();
for (i = 0; i < last; i++) {
for (j = 0; j < data.length; j++)
queues[(data[j] & mask) >> pos].enqueue(data[j]);
mask <<= b;
pos = pos+b;
for (j = k = 0; j < pow2b; j++)
while (!queues[j].isEmpty())
data[k++] = queues[j].dequeue();
}
}
private void clear(int[] arr, int q) {
arr[q] = -1;
}
private boolean isEmpty(int q) {
return q == -1;
}
public void radixsort2(int[] data) {
int d, j, k, factor, where;
int[] queues = new int[data.length], queueHeads = new int[radix];
int[] queueTails = new int[radix];
RadixsortNode n2 = new RadixsortNode(data), n1 = new RadixsortNode();
n1.arr = data;
n2.next = n1;
n1.next = n2;
for (j = 0; j < radix; j++)
clear(queueHeads,j);
for (d = 1, factor = 1; d <= digits; factor *= radix, d++) {
for (j = 0; j < data.length; j++) {
where = (n1.arr[j] / factor) % radix; // dth digit;
if (isEmpty(queueHeads[where]))
queueTails[where] = queueHeads[where] = j;
else {
queues[queueTails[where]] = j;
queueTails[where] = j;
}
}
for (j = 0; j < radix; j++)
if (!(isEmpty(queueHeads[j])))
clear(queues,queueTails[j]);
for (j = k = 0; j < radix; j++)
while (!(isEmpty(queueHeads[j]))) {
n2.arr[k++] = n1.arr[queueHeads[j]];
queueHeads[j] = queues[queueHeads[j]]; // also clears
} // queueHeads[];
n2 = n2.next;
n1 = n1.next;
}
if (digits % 2 != 0) // if digits is an odd number;
for (d = 0; d < data.length; d++)
data[d] = n1.arr[d];
}
public void bitRadixsort2(int[] data, int b) {
int pow2b = 1;
pow2b <<= b;
int d, j, k, where, pos = 0, mask = pow2b-1;
int last = (bits % b == 0) ? (bits/b) : (bits/b + 1);
int[] queues = new int[data.length], queueHeads = new int[pow2b];
int[] queueTails = new int[pow2b];
RadixsortNode n2 = new RadixsortNode(data), n1 = new RadixsortNode();
n1.arr = data;
n2.next = n1;
n1.next = n2;
for (d = 0; d < last; d++) {
for (j = 0; j < pow2b; j++)
clear(queueHeads,j);
for (j = 0; j < data.length; j++) {
where = (n1.arr[j] & mask) >> pos;
if (isEmpty(queueHeads[where]))
queueTails[where] = queueHeads[where] = j;
else {
queues[queueTails[where]] = j;
queueTails[where] = j;
}
}
mask <<= b;
pos = pos+b;
for (j = 0; j < pow2b; j++)
if (!(isEmpty(queueHeads[j])))
clear(queues,queueTails[j]);
for (j = k = 0; j < pow2b; j++)
while (!(isEmpty(queueHeads[j]))) {
n2.arr[k++] = n1.arr[queueHeads[j]];
queueHeads[j] = queues[queueHeads[j]];
}
n2 = n2.next;
n1 = n1.next;
}
if (last % 2 != 0) // if bits is an odd number;
for (d = 0; d < data.length; d++)
data[d] = n1.arr[d];
}
void countingsort(int data[]) {
int i, largest = data[0];
int[] tmp = new int[data.length];
for (i = 1; i < data.length; i++) // find the largest number
if (largest < data[i]) // in data and create the array
largest = data[i]; // of counters accordingly;
int[] count = new int[largest+1];
for (i = 0; i <= largest; i++)
count[i] = 0;
for (i = 0; i < data.length; i++) // count numbers in data[];
count[data[i]]++;
for (i = 1; i <= largest; i++) // count numbers <= i;
count[i] = count[i-1] + count[i];
for (i = data.length-1; i >= 0; i--) { // put numbers in order in tmp[];
tmp[count[data[i]]-1] = data[i];
count[data[i]]--;
}
for (i = 0; i < data.length; i++) // transfer numbers from tmp[]
data[i] = tmp[i]; // to the original array;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -