📄 e641.m
字号:
%------------------------------------------------------------------
% Example 6.4.1: Steepest Descent Method
%------------------------------------------------------------------
% Initialize
clc
clear
global lambda r
lambda = [1 1];
r = [3 2];
n = 2;
m = 2000;
p = 50;
s = 4;
v = 1;
tol = 1.e-4;
d = 5;
x1 = zeros (p,1);
Y = zeros (p,p);
% Find a minimum
fprintf ('Example 6.4.1: Steepest Descent Method\n');
for i = 1 : s
lambda(1) = 10^(i-1);
x = zeros(n,1);
[x,ev,j] = conjgrad (x,tol,v,m,'funf641');
fprintf ('\nLambda = %g',lambda(1)');
fprintf ('\nIterations = %i',j);
fprintf ('\nFunction evaluations = %g',ev);
fprintf ('\nEigenvalues = (%g,%g)',lambda);
fprintf ('\nOptimal x = [%.7f,%.7f]',x(1),x(2));
fprintf ('\nf(x) = %.7f\n',funf641(x));
if i < s
wait
end
end
% Plot the objective function
lambda(1) = 10^(s-1);
for i = 1 : p
x1(i) = (i-1)*d/(p-1);
end
for i = 1 : p
for j = 1 : p
x(1) = x1(i);
x(2) = x1(j);
Y(i,j) = funf641(x);
end
end
plotxyz (x1,x1,Y,'','x_1','x_2','f(x)');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -