📄 ximaint.cpp
字号:
kernelx[i]=KernelBlackman((float)(xi+i-1-x));
kernely[i]=KernelBlackman((float)(yi+i-1-y));
}//for i
break;
case IM_BESSEL:
for (i=0; i<4; i++) {
kernelx[i]=KernelBessel((float)(xi+i-1-x));
kernely[i]=KernelBessel((float)(yi+i-1-y));
}//for i
break;
case IM_GAUSSIAN:
for (i=0; i<4; i++) {
kernelx[i]=KernelGaussian((float)(xi+i-1-x));
kernely[i]=KernelGaussian((float)(yi+i-1-y));
}//for i
break;
case IM_QUADRATIC:
for (i=0; i<4; i++) {
kernelx[i]=KernelQuadratic((float)(xi+i-1-x));
kernely[i]=KernelQuadratic((float)(yi+i-1-y));
}//for i
break;
case IM_MITCHELL:
for (i=0; i<4; i++) {
kernelx[i]=KernelMitchell((float)(xi+i-1-x));
kernely[i]=KernelMitchell((float)(yi+i-1-y));
}//for i
break;
case IM_CATROM:
for (i=0; i<4; i++) {
kernelx[i]=KernelCatrom((float)(xi+i-1-x));
kernely[i]=KernelCatrom((float)(yi+i-1-y));
}//for i
break;
case IM_HANNING:
for (i=0; i<4; i++) {
kernelx[i]=KernelHanning((float)(xi+i-1-x));
kernely[i]=KernelHanning((float)(yi+i-1-y));
}//for i
break;
case IM_POWER:
for (i=0; i<4; i++) {
kernelx[i]=KernelPower((float)(xi+i-1-x));
kernely[i]=KernelPower((float)(yi+i-1-y));
}//for i
break;
}//switch
rr=gg=bb=aa=0;
if (((xi+2)<head.biWidth) && xi>=1 && ((yi+2)<head.biHeight) && (yi>=1) && !IsIndexed()) {
//optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
BYTE *pxptr, *pxptra;
for (yii=yi-1; yii<yi+3; yii++) {
pxptr=(BYTE *)BlindGetPixelPointer(xi-1, yii); //calculate pointer to first byte in row
kernelyc=kernely[yii-(yi-1)];
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()) {
//alpha is supported and valid (optimized bicubic int. for image with alpha)
pxptra=AlphaGetPointer(xi-1, yii);
kernel=kernelyc*kernelx[0];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
kernel=kernelyc*kernelx[1];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
kernel=kernelyc*kernelx[2];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
kernel=kernelyc*kernelx[3];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr); aa+=kernel*(*pxptra);
} else
#endif
//alpha not supported or valid (optimized bicubic int. for no alpha channel)
{
kernel=kernelyc*kernelx[0];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
kernel=kernelyc*kernelx[1];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
kernel=kernelyc*kernelx[2];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
kernel=kernelyc*kernelx[3];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr);
}
}//yii
} else {
//slower more flexible interpolation for border pixels and paletted images
RGBQUAD rgbs;
for (yii=yi-1; yii<yi+3; yii++) {
kernelyc=kernely[yii-(yi-1)];
for (xii=xi-1; xii<xi+3; xii++) {
kernel=kernelyc*kernelx[xii-(xi-1)];
rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
rr+=kernel*rgbs.rgbRed;
gg+=kernel*rgbs.rgbGreen;
bb+=kernel*rgbs.rgbBlue;
#if CXIMAGE_SUPPORT_ALPHA
aa+=kernel*rgbs.rgbReserved;
#endif
}//xii
}//yii
}//if
//for all colors, clip to 0..255 and assign to RGBQUAD
if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()) {
if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
} else
#endif
{ //Alpha not supported or no alpha at all
color.rgbReserved = 0;
}
return color;
case IM_LANCZOS:
//lanczos window (16*16) sinc interpolation
if (((xi+6)<0) || ((xi-5)>=head.biWidth) || ((yi+6)<0) || ((yi-5)>=head.biHeight)) {
//all points are outside bounds
switch (ofMethod) {
case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
//we don't need to interpolate anything with all points outside in this case
return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
break;
default:
//recalculate coordinates and use faster method later on
OverflowCoordinates(x,y,ofMethod);
xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
yi=(int)(y); if (y<0) yi--;
}//switch
}//if
for (xii=xi-5; xii<xi+7; xii++) kernelx[xii-(xi-5)]=KernelLanczosSinc((float)(xii-x), 6.0f);
rr=gg=bb=aa=0;
if (((xi+6)<head.biWidth) && ((xi-5)>=0) && ((yi+6)<head.biHeight) && ((yi-5)>=0) && !IsIndexed()) {
//optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds
BYTE *pxptr, *pxptra;
for (yii=yi-5; yii<yi+7; yii++) {
pxptr=(BYTE *)BlindGetPixelPointer(xi-5, yii); //calculate pointer to first byte in row
kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()) {
//alpha is supported and valid
pxptra=AlphaGetPointer(xi-1, yii);
for (xii=0; xii<12; xii++) {
kernel=kernelyc*kernelx[xii];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);
}//for xii
} else
#endif
//alpha not supported or valid
{
for (xii=0; xii<12; xii++) {
kernel=kernelyc*kernelx[xii];
bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);
}//for xii
}
}//yii
} else {
//slower more flexible interpolation for border pixels and paletted images
RGBQUAD rgbs;
for (yii=yi-5; yii<yi+7; yii++) {
kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);
for (xii=xi-5; xii<xi+7; xii++) {
kernel=kernelyc*kernelx[xii-(xi-5)];
rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);
rr+=kernel*rgbs.rgbRed;
gg+=kernel*rgbs.rgbGreen;
bb+=kernel*rgbs.rgbBlue;
#if CXIMAGE_SUPPORT_ALPHA
aa+=kernel*rgbs.rgbReserved;
#endif
}//xii
}//yii
}//if
//for all colors, clip to 0..255 and assign to RGBQUAD
if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()) {
if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
} else
#endif
{ //Alpha not supported or no alpha at all
color.rgbReserved = 0;
}
return color;
}//switch
}
////////////////////////////////////////////////////////////////////////////////
/**
* Helper function for GetAreaColorInterpolated.
* Adds 'surf' portion of image pixel with color 'color' to (rr,gg,bb,aa).
*/
void CxImage::AddAveragingCont(RGBQUAD const &color, float const surf, float &rr, float &gg, float &bb, float &aa)
{
rr+=color.rgbRed*surf;
gg+=color.rgbGreen*surf;
bb+=color.rgbBlue*surf;
#if CXIMAGE_SUPPORT_ALPHA
aa+=color.rgbReserved*surf;
#endif
}
////////////////////////////////////////////////////////////////////////////////
/**
* This method is similar to GetPixelColorInterpolated, but this method also properly handles
* subsampling.
* If you need to sample original image with interval of more than 1 pixel (as when shrinking an image),
* you should use this method instead of GetPixelColorInterpolated or aliasing will occur.
* When area width and height are both less than pixel, this method gets pixel color by interpolating
* color of frame center with selected (inMethod) interpolation by calling GetPixelColorInterpolated.
* If width and height are more than 1, method calculates color by averaging color of pixels within area.
* Interpolation method is not used in this case. Pixel color is interpolated by averaging instead.
* If only one of both is more than 1, method uses combination of interpolation and averaging.
* Chosen interpolation method is used, but since it is averaged later on, there is little difference
* between IM_BILINEAR (perhaps best for this case) and better methods. IM_NEAREST_NEIGHBOUR again
* leads to aliasing artifacts.
* This method is a bit slower than GetPixelColorInterpolated and when aliasing is not a problem, you should
* simply use the later.
*
* \param xc, yc - center of (rectangular) area
* \param w, h - width and height of area
* \param inMethod - interpolation method that is used, when interpolation is used (see above)
* \param ofMethod - overflow method used when retrieving individual pixel colors
* \param rplColor - replacement colour to use, in OM_COLOR
*
* \author ***bd*** 2.2004
*/
RGBQUAD CxImage::GetAreaColorInterpolated(
float const xc, float const yc, float const w, float const h,
InterpolationMethod const inMethod,
OverflowMethod const ofMethod,
RGBQUAD* const rplColor)
{
RGBQUAD color; //calculated colour
if (h<=1 && w<=1) {
//both width and height are less than one... we will use interpolation of center point
return GetPixelColorInterpolated(xc, yc, inMethod, ofMethod, rplColor);
} else {
//area is wider and/or taller than one pixel:
CxRect2 area(xc-w/2.0f, yc-h/2.0f, xc+w/2.0f, yc+h/2.0f); //area
int xi1=(int)(area.botLeft.x+0.49999999f); //low x
int yi1=(int)(area.botLeft.y+0.49999999f); //low y
int xi2=(int)(area.topRight.x+0.5f); //top x
int yi2=(int)(area.topRight.y+0.5f); //top y (for loops)
float rr,gg,bb,aa; //red, green, blue and alpha components
rr=gg=bb=aa=0;
int x,y; //loop counters
float s=0; //surface of all pixels
float cps; //surface of current crosssection
if (h>1 && w>1) {
//width and height of area are greater than one pixel, so we can employ "ordinary" averaging
CxRect2 intBL, intTR; //bottom left and top right intersection
intBL=area.CrossSection(CxRect2(((float)xi1)-0.5f, ((float)yi1)-0.5f, ((float)xi1)+0.5f, ((float)yi1)+0.5f));
intTR=area.CrossSection(CxRect2(((float)xi2)-0.5f, ((float)yi2)-0.5f, ((float)xi2)+0.5f, ((float)yi2)+0.5f));
float wBL, wTR, hBL, hTR;
wBL=intBL.Width(); //width of bottom left pixel-area intersection
hBL=intBL.Height(); //height of bottom left...
wTR=intTR.Width(); //width of top right...
hTR=intTR.Height(); //height of top right...
AddAveragingCont(GetPixelColorWithOverflow(xi1,yi1,ofMethod,rplColor), wBL*hBL, rr, gg, bb, aa); //bottom left pixel
AddAveragingCont(GetPixelColorWithOverflow(xi2,yi1,ofMethod,rplColor), wTR*hBL, rr, gg, bb, aa); //bottom right pixel
AddAveragingCont(GetPixelColorWithOverflow(xi1,yi2,ofMethod,rplColor), wBL*hTR, rr, gg, bb, aa); //top left pixel
AddAveragingCont(GetPixelColorWithOverflow(xi2,yi2,ofMethod,rplColor), wTR*hTR, rr, gg, bb, aa); //top right pixel
//bottom and top row
for (x=xi1+1; x<xi2; x++) {
AddAveragingCont(GetPixelColorWithOverflow(x,yi1,ofMethod,rplColor), hBL, rr, gg, bb, aa); //bottom row
AddAveragingCont(GetPixelColorWithOverflow(x,yi2,ofMethod,rplColor), hTR, rr, gg, bb, aa); //top row
}
//leftmost and rightmost column
for (y=yi1+1; y<yi2; y++) {
AddAveragingCont(GetPixelColorWithOverflow(xi1,y,ofMethod,rplColor), wBL, rr, gg, bb, aa); //left column
AddAveragingCont(GetPixelColorWithOverflow(xi2,y,ofMethod,rplColor), wTR, rr, gg, bb, aa); //right column
}
for (y=yi1+1; y<yi2; y++) {
for (x=xi1+1; x<xi2; x++) {
color=GetPixelColorWithOverflow(x,y,ofMethod,rplColor);
rr+=color.rgbRed;
gg+=color.rgbGreen;
bb+=color.rgbBlue;
#if CXIMAGE_SUPPORT_ALPHA
aa+=color.rgbReserved;
#endif
}//for x
}//for y
} else {
//width or height greater than one:
CxRect2 intersect; //intersection with current pixel
CxPoint2 center;
for (y=yi1; y<=yi2; y++) {
for (x=xi1; x<=xi2; x++) {
intersect=area.CrossSection(CxRect2(((float)x)-0.5f, ((float)y)-0.5f, ((float)x)+0.5f, ((float)y)+0.5f));
center=intersect.Center();
color=GetPixelColorInterpolated(center.x, center.y, inMethod, ofMethod, rplColor);
cps=intersect.Surface();
rr+=color.rgbRed*cps;
gg+=color.rgbGreen*cps;
bb+=color.rgbBlue*cps;
#if CXIMAGE_SUPPORT_ALPHA
aa+=color.rgbReserved*cps;
#endif
}//for x
}//for y
}//if
s=area.Surface();
rr/=s; gg/=s; bb/=s; aa/=s;
if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;
if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;
if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()) {
if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;
}//if
#endif
}//if
return color;
}
////////////////////////////////////////////////////////////////////////////////
float CxImage::KernelBSpline(const float x)
{
if (x>2.0f) return 0.0f;
// thanks to Kristian Kratzenstein
float a, b, c, d;
float xm1 = x - 1.0f; // Was calculatet anyway cause the "if((x-1.0f) < 0)"
float xp1 = x + 1.0f;
float xp2 = x + 2.0f;
if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2; // Only float, not float -> double -> float
if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
if (x <= 0) c = 0.0f; else c = x*x*x;
if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
/* equivalent <Vladim韗 Kloucek>
if (x < -2.0)
return(0.0f);
if (x < -1.0)
return((2.0f+x)*(2.0f+x)*(2.0f+x)*0.16666666666666666667f);
if (x < 0.0)
return((4.0f+x*x*(-6.0f-3.0f*x))*0.16666666666666666667f);
if (x < 1.0)
return((4.0f+x*x*(-6.0f+3.0f*x))*0.16666666666666666667f);
if (x < 2.0)
return((2.0f-x)*(2.0f-x)*(2.0f-x)*0.16666666666666666667f);
return(0.0f);
*/
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -