📄 ximaint.cpp
字号:
// xImaInt.cpp : interpolation functions
/* 02/2004 - Branko Brevensek
* CxImage version 6.0.0 02/Feb/2008 - Davide Pizzolato - www.xdp.it
*/
#include "ximage.h"
#include "ximath.h"
#if CXIMAGE_SUPPORT_INTERPOLATION
////////////////////////////////////////////////////////////////////////////////
/**
* Recalculates coordinates according to specified overflow method.
* If pixel (x,y) lies within image, nothing changes.
*
* \param x, y - coordinates of pixel
* \param ofMethod - overflow method
*
* \return x, y - new coordinates (pixel (x,y) now lies inside image)
*
* \author ***bd*** 2.2004
*/
void CxImage::OverflowCoordinates(long &x, long &y, OverflowMethod const ofMethod)
{
if (IsInside(x,y)) return; //if pixel is within bounds, no change
switch (ofMethod) {
case OM_REPEAT:
//clip coordinates
x=max(x,0); x=min(x, head.biWidth-1);
y=max(y,0); y=min(y, head.biHeight-1);
break;
case OM_WRAP:
//wrap coordinates
x = x % head.biWidth;
y = y % head.biHeight;
if (x<0) x = head.biWidth + x;
if (y<0) y = head.biHeight + y;
break;
case OM_MIRROR:
//mirror pixels near border
if (x<0) x=((-x) % head.biWidth);
else if (x>=head.biWidth) x=head.biWidth-(x % head.biWidth + 1);
if (y<0) y=((-y) % head.biHeight);
else if (y>=head.biHeight) y=head.biHeight-(y % head.biHeight + 1);
break;
default:
return;
}//switch
}
////////////////////////////////////////////////////////////////////////////////
/**
* See OverflowCoordinates for integer version
* \author ***bd*** 2.2004
*/
void CxImage::OverflowCoordinates(float &x, float &y, OverflowMethod const ofMethod)
{
if (x>=0 && x<head.biWidth && y>=0 && y<head.biHeight) return; //if pixel is within bounds, no change
switch (ofMethod) {
case OM_REPEAT:
//clip coordinates
x=max(x,0); x=min(x, head.biWidth-1);
y=max(y,0); y=min(y, head.biHeight-1);
break;
case OM_WRAP:
//wrap coordinates
x = (float)fmod(x, (float) head.biWidth);
y = (float)fmod(y, (float) head.biHeight);
if (x<0) x = head.biWidth + x;
if (y<0) y = head.biHeight + y;
break;
case OM_MIRROR:
//mirror pixels near border
if (x<0) x=(float)fmod(-x, (float) head.biWidth);
else if (x>=head.biWidth) x=head.biWidth-((float)fmod(x, (float) head.biWidth) + 1);
if (y<0) y=(float)fmod(-y, (float) head.biHeight);
else if (y>=head.biHeight) y=head.biHeight-((float)fmod(y, (float) head.biHeight) + 1);
break;
default:
return;
}//switch
}
////////////////////////////////////////////////////////////////////////////////
/**
* Method return pixel color. Different methods are implemented for out of bounds pixels.
* If an image has alpha channel, alpha value is returned in .RGBReserved.
*
* \param x,y : pixel coordinates
* \param ofMethod : out-of-bounds method:
* - OF_WRAP - wrap over to pixels on other side of the image
* - OF_REPEAT - repeat last pixel on the edge
* - OF_COLOR - return input value of color
* - OF_BACKGROUND - return background color (if not set, return input color)
* - OF_TRANSPARENT - return transparent pixel
*
* \param rplColor : input color (returned for out-of-bound coordinates in OF_COLOR mode and if other mode is not applicable)
*
* \return color : color of pixel
* \author ***bd*** 2.2004
*/
RGBQUAD CxImage::GetPixelColorWithOverflow(long x, long y, OverflowMethod const ofMethod, RGBQUAD* const rplColor)
{
RGBQUAD color; //color to return
if ((!IsInside(x,y)) || pDib==NULL) { //is pixel within bouns?:
//pixel is out of bounds or no DIB
if (rplColor!=NULL)
color=*rplColor;
else {
color.rgbRed=color.rgbGreen=color.rgbBlue=255; color.rgbReserved=0; //default replacement colour: white transparent
}//if
if (pDib==NULL) return color;
//pixel is out of bounds:
switch (ofMethod) {
case OM_TRANSPARENT:
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()) {
//alpha transparency is supported and image has alpha layer
color.rgbReserved=0;
} else {
#endif //CXIMAGE_SUPPORT_ALPHA
//no alpha transparency
if (GetTransIndex()>=0) {
color=GetTransColor(); //single color transparency enabled (return transparent color)
}//if
#if CXIMAGE_SUPPORT_ALPHA
}//if
#endif //CXIMAGE_SUPPORT_ALPHA
return color;
case OM_BACKGROUND:
//return background color (if it exists, otherwise input value)
if (info.nBkgndIndex >= 0) {
if (head.biBitCount<24) color = GetPaletteColor((BYTE)info.nBkgndIndex);
else color = info.nBkgndColor;
}//if
return color;
case OM_REPEAT:
case OM_WRAP:
case OM_MIRROR:
OverflowCoordinates(x,y,ofMethod);
break;
default:
//simply return replacement color (OM_COLOR and others)
return color;
}//switch
}//if
//just return specified pixel (it's within bounds)
return BlindGetPixelColor(x,y);
}
////////////////////////////////////////////////////////////////////////////////
/**
* This method reconstructs image according to chosen interpolation method and then returns pixel (x,y).
* (x,y) can lie between actual image pixels. If (x,y) lies outside of image, method returns value
* according to overflow method.
* This method is very useful for geometrical image transformations, where destination pixel
* can often assume color value lying between source pixels.
*
* \param (x,y) - coordinates of pixel to return
* GPCI method recreates "analogue" image back from digital data, so x and y
* are float values and color value of point (1.1,1) will generally not be same
* as (1,1). Center of first pixel is at (0,0) and center of pixel right to it is (1,0).
* (0.5,0) is half way between these two pixels.
* \param inMethod - interpolation (reconstruction) method (kernel) to use:
* - IM_NEAREST_NEIGHBOUR - returns colour of nearest lying pixel (causes stairy look of
* processed images)
* - IM_BILINEAR - interpolates colour from four neighbouring pixels (softens image a bit)
* - IM_BICUBIC - interpolates from 16 neighbouring pixels (can produce "halo" artifacts)
* - IM_BICUBIC2 - interpolates from 16 neighbouring pixels (perhaps a bit less halo artifacts
than IM_BICUBIC)
* - IM_BSPLINE - interpolates from 16 neighbouring pixels (softens image, washes colours)
* (As far as I know, image should be prefiltered for this method to give
* good results... some other time :) )
* This method uses bicubic interpolation kernel from CXImage 5.99a and older
* versions.
* - IM_LANCZOS - interpolates from 12*12 pixels (slow, ringing artifacts)
*
* \param ofMethod - overflow method (see comments at GetPixelColorWithOverflow)
* \param rplColor - pointer to color used for out of borders pixels in OM_COLOR mode
* (and other modes if colour can't calculated in a specified way)
*
* \return interpolated color value (including interpolated alpha value, if image has alpha layer)
*
* \author ***bd*** 2.2004
*/
RGBQUAD CxImage::GetPixelColorInterpolated(
float x,float y,
InterpolationMethod const inMethod,
OverflowMethod const ofMethod,
RGBQUAD* const rplColor)
{
//calculate nearest pixel
int xi=(int)(x); if (x<0) xi--; //these replace (incredibly slow) floor (Visual c++ 2003, AMD Athlon)
int yi=(int)(y); if (y<0) yi--;
RGBQUAD color; //calculated colour
switch (inMethod) {
case IM_NEAREST_NEIGHBOUR:
return GetPixelColorWithOverflow((long)(x+0.5f), (long)(y+0.5f), ofMethod, rplColor);
default: {
//IM_BILINEAR: bilinear interpolation
if (xi<-1 || xi>=head.biWidth || yi<-1 || yi>=head.biHeight) { //all 4 points are outside bounds?:
switch (ofMethod) {
case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
//we don't need to interpolate anything with all points outside in this case
return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
default:
//recalculate coordinates and use faster method later on
OverflowCoordinates(x,y,ofMethod);
xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
yi=(int)(y); if (y<0) yi--;
}//switch
}//if
//get four neighbouring pixels
if ((xi+1)<head.biWidth && xi>=0 && (yi+1)<head.biHeight && yi>=0 && head.biClrUsed==0) {
//all pixels are inside RGB24 image... optimize reading (and use fixed point arithmetic)
WORD wt1=(WORD)((x-xi)*256.0f), wt2=(WORD)((y-yi)*256.0f);
WORD wd=wt1*wt2>>8;
WORD wb=wt1-wd;
WORD wc=wt2-wd;
WORD wa=256-wt1-wc;
WORD wrr,wgg,wbb;
BYTE *pxptr=(BYTE*)info.pImage+yi*info.dwEffWidth+xi*3;
wbb=wa*(*pxptr++); wgg=wa*(*pxptr++); wrr=wa*(*pxptr++);
wbb+=wb*(*pxptr++); wgg+=wb*(*pxptr++); wrr+=wb*(*pxptr);
pxptr+=(info.dwEffWidth-5); //move to next row
wbb+=wc*(*pxptr++); wgg+=wc*(*pxptr++); wrr+=wc*(*pxptr++);
wbb+=wd*(*pxptr++); wgg+=wd*(*pxptr++); wrr+=wd*(*pxptr);
color.rgbRed=(BYTE) (wrr>>8); color.rgbGreen=(BYTE) (wgg>>8); color.rgbBlue=(BYTE) (wbb>>8);
#if CXIMAGE_SUPPORT_ALPHA
if (pAlpha) {
WORD waa;
//image has alpha layer... we have to do the same for alpha data
pxptr=AlphaGetPointer(xi,yi); //pointer to first byte
waa=wa*(*pxptr++); waa+=wb*(*pxptr); //first two pixels
pxptr+=(head.biWidth-1); //move to next row
waa+=wc*(*pxptr++); waa+=wd*(*pxptr); //and second row pixels
color.rgbReserved=(BYTE) (waa>>8);
} else
#endif
{ //Alpha not supported or no alpha at all
color.rgbReserved = 0;
}
return color;
} else {
//default (slower) way to get pixels (not RGB24 or some pixels out of borders)
float t1=x-xi, t2=y-yi;
float d=t1*t2;
float b=t1-d;
float c=t2-d;
float a=1-t1-c;
RGBQUAD rgb11,rgb21,rgb12,rgb22;
rgb11=GetPixelColorWithOverflow(xi, yi, ofMethod, rplColor);
rgb21=GetPixelColorWithOverflow(xi+1, yi, ofMethod, rplColor);
rgb12=GetPixelColorWithOverflow(xi, yi+1, ofMethod, rplColor);
rgb22=GetPixelColorWithOverflow(xi+1, yi+1, ofMethod, rplColor);
//calculate linear interpolation
color.rgbRed=(BYTE) (a*rgb11.rgbRed+b*rgb21.rgbRed+c*rgb12.rgbRed+d*rgb22.rgbRed);
color.rgbGreen=(BYTE) (a*rgb11.rgbGreen+b*rgb21.rgbGreen+c*rgb12.rgbGreen+d*rgb22.rgbGreen);
color.rgbBlue=(BYTE) (a*rgb11.rgbBlue+b*rgb21.rgbBlue+c*rgb12.rgbBlue+d*rgb22.rgbBlue);
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid())
color.rgbReserved=(BYTE) (a*rgb11.rgbReserved+b*rgb21.rgbReserved+c*rgb12.rgbReserved+d*rgb22.rgbReserved);
else
#endif
{ //Alpha not supported or no alpha at all
color.rgbReserved = 0;
}
return color;
}//if
}//default
case IM_BICUBIC:
case IM_BICUBIC2:
case IM_BSPLINE:
case IM_BOX:
case IM_HERMITE:
case IM_HAMMING:
case IM_SINC:
case IM_BLACKMAN:
case IM_BESSEL:
case IM_GAUSSIAN:
case IM_QUADRATIC:
case IM_MITCHELL:
case IM_CATROM:
case IM_HANNING:
case IM_POWER:
//bicubic interpolation(s)
if (((xi+2)<0) || ((xi-1)>=head.biWidth) || ((yi+2)<0) || ((yi-1)>=head.biHeight)) { //all points are outside bounds?:
switch (ofMethod) {
case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:
//we don't need to interpolate anything with all points outside in this case
return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);
break;
default:
//recalculate coordinates and use faster method later on
OverflowCoordinates(x,y,ofMethod);
xi=(int)(x); if (x<0) xi--; //x and/or y have changed ... recalculate xi and yi
yi=(int)(y); if (y<0) yi--;
}//switch
}//if
//some variables needed from here on
int xii,yii; //x any y integer indexes for loops
float kernel, kernelyc; //kernel cache
float kernelx[12], kernely[4]; //precalculated kernel values
float rr,gg,bb,aa; //accumulated color values
//calculate multiplication factors for all pixels
int i;
switch (inMethod) {
case IM_BICUBIC:
for (i=0; i<4; i++) {
kernelx[i]=KernelCubic((float)(xi+i-1-x));
kernely[i]=KernelCubic((float)(yi+i-1-y));
}//for i
break;
case IM_BICUBIC2:
for (i=0; i<4; i++) {
kernelx[i]=KernelGeneralizedCubic((float)(xi+i-1-x), -0.5);
kernely[i]=KernelGeneralizedCubic((float)(yi+i-1-y), -0.5);
}//for i
break;
case IM_BSPLINE:
for (i=0; i<4; i++) {
kernelx[i]=KernelBSpline((float)(xi+i-1-x));
kernely[i]=KernelBSpline((float)(yi+i-1-y));
}//for i
break;
case IM_BOX:
for (i=0; i<4; i++) {
kernelx[i]=KernelBox((float)(xi+i-1-x));
kernely[i]=KernelBox((float)(yi+i-1-y));
}//for i
break;
case IM_HERMITE:
for (i=0; i<4; i++) {
kernelx[i]=KernelHermite((float)(xi+i-1-x));
kernely[i]=KernelHermite((float)(yi+i-1-y));
}//for i
break;
case IM_HAMMING:
for (i=0; i<4; i++) {
kernelx[i]=KernelHamming((float)(xi+i-1-x));
kernely[i]=KernelHamming((float)(yi+i-1-y));
}//for i
break;
case IM_SINC:
for (i=0; i<4; i++) {
kernelx[i]=KernelSinc((float)(xi+i-1-x));
kernely[i]=KernelSinc((float)(yi+i-1-y));
}//for i
break;
case IM_BLACKMAN:
for (i=0; i<4; i++) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -