📄 bt.m
字号:
function Px = bt(x)
global sigtype;
global vari;
global ar_coef;
global freq;
global amp;
HH = findobj(gcf,'Tag','bt_n');
p = str2num(get(HH,'String'));
if ~p
error('Invalid N');
else
N=p;
end;
HH = findobj(gcf,'Tag','bt_m');
p = str2num(get(HH,'String'));
if ~p
error('Invalid M');
else
M=p;
end;
HH = findobj(gcf,'Tag','bt_win');
winval = get(HH,'Value');
if(winval==2)
win = 4;
elseif(winval==3)
win = 3;
elseif(winval==4)
win = 2;
elseif(winval==5)
win = 5;
else
win = 1;
end;
figure('Name','Blackman-Tukey Method','Menubar','none', ...
'NumberTitle', 'off','Position',[212 200 450 500]);
TotN = 512;
j = sqrt(-1);
noise = sqrt(vari)*randn(50*N,1);
seta1 = (rand(1)-0.5)*2*pi;
seta2 = (rand(1)-0.5)*2*pi;
index_f = linspace(0,1,TotN);
Px_ave = 0;
subplot('Position',[0.13 0.581 0.77 0.344]);
for cnt=1:50;
if(sigtype == 2)
for nn = 1:N;
sigdata(nn) = amp(1)*sin(nn*freq(1)*pi+seta1)+amp(2)*sin(nn*freq(2)*pi+seta2)+noise((cnt-1)*N+nn);
end;
elseif(sigtype == 3)
sigdata(1) = noise((cnt-1)*N+1);
sigdata(2) = ar_coef(1)*sigdata(1)+noise((cnt-1)*N+2);
sigdata(3) = ar_coef(1)*sigdata(2)+ar_coef(2)*sigdata(1)+noise((cnt-1)*N+3);
for nn = 4:N;
sigdata(nn) = ar_coef(1)*sigdata(nn-1)+ar_coef(2)*sigdata(nn-2)+ar_coef(3)*sigdata(nn-3)+noise((cnt-1)*N+nn);
end;
else
for nn = 1:N;
sigdata(nn) = noise((cnt-1)*N+nn);
end;
end;
newsig = sigdata - ones(1,N)*(sum(sigdata)/N);
fil_b = fliplr(newsig);
fil_out = (filter(fil_b,[1],newsig))/(N-1);
auto_sig = fliplr(fil_out);
R = auto_sig(2:M);
r = [fliplr(R),auto_sig(1),R];
win_M = 2*M-1;
w = ones(win_M,1);
if (win == 2) w = hamming(win_M);
elseif (win == 3) w = hanning(win_M);
elseif (win == 4) w = bartlett(win_M);
elseif (win == 5) w = blackman(win_M);
end;
r = r'.*w;
Px = abs(fft(r,1024));
Px(1)=Px(2);
Px_ave = Px_ave + Px/50.0;
Px_db = 10*log10(Px);
plot(index_f,Px_db(1:512));
hold on;
end;
hold off;
xlabel('Frequency (units of \pi)');
ylabel('Magnitude (dB)');
title('Overlay plot of 50 Blackman-Tukey estimates','fontsize',13);
Px_ave_db = 10*log10(Px_ave);
if(sigtype==3)
for nn = 1:TotN;
den = 1-ar_coef(1)*exp(-j*2*pi*(nn-1)/(2*TotN))-ar_coef(2)*exp(-j*4*pi*(nn-1)/(2*TotN))-ar_coef(3)*exp(-j*6*pi*(nn-1)/(2*TotN));
if(den == 0)
den = 0.000001;
end;
psd_true(nn) = vari/(abs(den)^2);
end;
subplot(2,2,3);
if(vari~=0)
psd_db = 10*log10(psd_true);
plot(index_f,psd_db);
end;
xlabel('Frequency (units of \pi)');
ylabel('Magnitude (dB)');
title('True power spectrum','fontsize',13);
subplot(2,2,4);
else
subplot('Position',[0.13 0.11 0.77 0.344]);
end;
plot(index_f,Px_ave_db(1:512));
xlabel('Frequency (units of \pi)');
ylabel('Magnitude (dB)');
title('The ensemble average','fontsize',13);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -