📄 leigs.m
字号:
function [E,V] = leigs(X, NE, PARAM, TYPE)% Laplacian Eigenmaps Algorithm%% please refer to University of Chicago% Computer Science Technical Report TR-2002-01% Mikhail Belkin, Partha Niyogi% Laplacian Eigenmaps for Dimensionality Reduction and Data Representation% Note that Laplacian, not normalized Laplacian is used here% http://www.cs.uchicago.edu/research/publications/techreports/TR-2002-1%%% Calculate the graph laplacian of the adjacency graph of data set X.%% [E,V] = leigs(X, NE, PARAM, TYPE)%% X - (dimension x nbr_points) matrix.% NE - number of eigenvectors% TYPE - string 'nn' or string 'epsballs'% PARAM - integer if TYPE='nn', real number if TYPE='epsballs'%% Returns:% E - (NE x nbr_points) matrix with eigenfunctions,% V is (NE x NE) matrix with eigenvalues on the diagonal%% Author:%% Mikhail Belkin% misha@math.uchicago.edu%% Modified by Gabriel Peyr
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -