📄 g722.~c
字号:
/* done with higher sub-band encoder, now Delay for next time */
rh2 = rh1;
rh1 = yh;
ph2 = ph1;
ph1 = ph;
/* multiplex ih and il to get signals together */
//return(il | (ih << 6));
data1 = il;
data2 = ih;
return 1;
}
/* decode function, result in xout1 and xout2 */
//void decode(INT32 input)
void decode(INT32 input1,INT32 input2)
{
INT32 i;
//long int xa1,xa2; /* qmf accumulators */
INT32 xa1,xa2;
INT32 *h_ptr,*ac_ptr,*ac_ptr1,*ad_ptr,*ad_ptr1;
/* split transmitted word from input into ilr and ih */
//ilr = input & 0x3f;
//ih = input >> 6;
ilr = input1;
ih = input2;
/* LOWER SUB_BAND DECODER */
/* filtez: compute predictor output for zero section */
dec_szl = filtez(dec_del_bpl,dec_del_dltx);
/* filtep: compute predictor output signal for pole section */
dec_spl = filtep(dec_rlt1,dec_al1,dec_rlt2,dec_al2);
dec_sl = dec_spl + dec_szl;
/* invqxl: compute quantized difference signal for adaptive predic */
//dec_dlt = ((INT32)dec_detl*qq4_code4_table[ilr >> 2]) >> 15;//06.6.9
dec_dlt = ((INT32)dec_detl*qq4_code4_table[ilr >> 2]) + (16384) >> 15;
/* invqxl: compute quantized difference signal for decoder output */
//dl = ((INT32)dec_detl*qq6_code6_table[il]) >> 15; //06.6.9
dl = ((INT32)dec_detl*qq6_code6_table[il]) + (16384) >> 15;
rl = dl + dec_sl;
/* logscl: quantizer scale factor adaptation in the lower sub-band */
dec_nbl = logscl(ilr,dec_nbl);
/* scalel: computes quantizer scale factor in the lower sub band */
dec_detl = scalel(dec_nbl,8);
/* parrec - add pole predictor output to quantized diff. signal */
/* for partially reconstructed signal */
dec_plt = dec_dlt + dec_szl;
/* upzero: update zero section predictor coefficients */
upzero(dec_dlt,dec_del_dltx,dec_del_bpl);
/* uppol2: update second predictor coefficient apl2 and delay it as al2 */
dec_al2 = uppol2(dec_al1,dec_al2,dec_plt,dec_plt1,dec_plt2);
/* uppol1: update first predictor coef. (pole setion) */
dec_al1 = uppol1(dec_al1,dec_al2,dec_plt,dec_plt1);
/* recons : compute recontructed signal for adaptive predictor */
dec_rlt = dec_sl + dec_dlt;
/* done with lower sub band decoder, implement delays for next time */
dec_rlt2 = dec_rlt1;
dec_rlt1 = dec_rlt;
dec_plt2 = dec_plt1;
dec_plt1 = dec_plt;
/* HIGH SUB-BAND DECODER */
/* filtez: compute predictor output for zero section */
dec_szh = filtez(dec_del_bph,dec_del_dhx);
/* filtep: compute predictor output signal for pole section */
dec_sph = filtep(dec_rh1,dec_ah1,dec_rh2,dec_ah2);
/* predic:compute the predictor output value in the higher sub_band decoder */
dec_sh = dec_sph + dec_szh;
/* invqah: in-place compute the quantized difference signal */
//dec_dh = ((INT32)dec_deth*qq2_code2_table[ih]) >> 15L ; //06.6.9
dec_dh = ((INT32)dec_deth*qq2_code2_table[ih]) + (16384) >> 15;
/* logsch: update logarithmic quantizer scale factor in hi sub band */
dec_nbh = logsch(ih,dec_nbh);
/* scalel: compute the quantizer scale factor in the higher sub band */
dec_deth = scalel(dec_nbh,10);
/* parrec: compute partially recontructed signal */
dec_ph = dec_dh + dec_szh;
/* upzero: update zero section predictor coefficients */
upzero(dec_dh,dec_del_dhx,dec_del_bph);
/* uppol2: update second predictor coefficient aph2 and delay it as ah2 */
dec_ah2 = uppol2(dec_ah1,dec_ah2,dec_ph,dec_ph1,dec_ph2);
/* uppol1: update first predictor coef. (pole setion) */
dec_ah1 = uppol1(dec_ah1,dec_ah2,dec_ph,dec_ph1);
/* recons : compute recontructed signal for adaptive predictor */
rh = dec_sh + dec_dh;
/* done with high band decode, implementing delays for next time here */
dec_rh2 = dec_rh1;
dec_rh1 = rh;
dec_ph2 = dec_ph1;
dec_ph1 = dec_ph;
/* end of higher sub_band decoder */
/* end with receive quadrature mirror filters */
xd = rl - rh;
xs = rl + rh;
/* receive quadrature mirror filters implemented here */
h_ptr = h;
ac_ptr = accumc;
ad_ptr = accumd;
xa1 = (INT32)xd * (*h_ptr++);
xa2 = (INT32)xs * (*h_ptr++);
/* main multiply accumulate loop for samples and coefficients */
for(i = 0 ; i < 10 ; i++)
{
xa1 += (INT32)(*ac_ptr++) * (*h_ptr++);
xa2 += (INT32)(*ad_ptr++) * (*h_ptr++);
}
/* final mult/accumulate */
xa1 += (INT32)(*ac_ptr) * (*h_ptr++);
xa2 += (INT32)(*ad_ptr) * (*h_ptr++);
/* scale by 2^14 */
xout1 = xa1 >> 14;
xout2 = xa2 >> 14;
//define the data 06.6.9
if(xout1>32767) xout1 = 32767;
else if(xout1<-32768) xout1 = -32768;
if(xout2>32767) xout2 = 32767;
else if(xout2<-32768) xout2 = -32768;
/* update delay lines */
ac_ptr1 = ac_ptr - 1;
ad_ptr1 = ad_ptr - 1;
for(i = 0 ; i < 10 ; i++)
{
*ac_ptr-- = *ac_ptr1--;
*ad_ptr-- = *ad_ptr1--;
}
*ac_ptr = xd;
*ad_ptr = xs;
return;
}
/* clear all storage locations */
void reset()
{
INT32 i;
detl = dec_detl = 32; /* reset to min scale factor */
deth = dec_deth = 8;
nbl = al1 = al2 = plt1 = plt2 = rlt1 = rlt2 = 0;
nbh = ah1 = ah2 = ph1 = ph2 = rh1 = rh2 = 0;
dec_nbl = dec_al1 = dec_al2 = dec_plt1 = dec_plt2 = dec_rlt1 = dec_rlt2 = 0;
dec_nbh = dec_ah1 = dec_ah2 = dec_ph1 = dec_ph2 = dec_rh1 = dec_rh2 = 0;
for(i = 0 ; i < 6 ; i++)
{
delay_dltx[i] = 0;
delay_dhx[i] = 0;
dec_del_dltx[i] = 0;
dec_del_dhx[i] = 0;
}
for(i = 0 ; i < 6 ; i++)
{
delay_bpl[i] = 0;
delay_bph[i] = 0;
dec_del_bpl[i] = 0;
dec_del_bph[i] = 0;
}
for(i = 0 ; i < 23 ; i++) tqmf[i] = 0;
for(i = 0 ; i < 11 ; i++)
{
accumc[i] = 0;
accumd[i] = 0;
}
return;
}
/* filtez - compute predictor output signal (zero section) */
/* input: bpl1-6 and dlt1-6, output: szl */
INT32 filtez(INT32 *bpl,INT32 *dlt)
{
INT32 i;
//long int zl;
INT32 zl;
zl = (*bpl++) * (*dlt++);
/* MAX: 6 */
for(i = 1 ; i < 6 ; i++)
zl += (*bpl++) * (*dlt++);
return((zl >> 14)); /* x2 here */
}
/* filtep - compute predictor output signal (pole section) */
/* input rlt1-2 and al1-2, output spl */
INT32 filtep(INT32 rlt1,INT32 al1,INT32 rlt2,INT32 al2)
{
//long int pl,pl2;
INT32 pl,pl2;
pl = 2*rlt1;
pl = (INT32)al1*pl;
pl2 = 2*rlt2;
pl += (INT32)al2*pl2;
return((pl >> 15));
}
/* quantl - quantize the difference signal in the lower sub-band */
INT32 quantl(INT32 el,INT32 detl)
{
INT32 ril,mil;
//long int wd,decis;
INT32 wd,decis;
/* abs of difference signal */
wd = my_abs(el);
/* determine mil based on decision levels and detl gain */
/* MAX: 30 */
for(mil = 0 ; mil < 30 ; mil++)
{
//decis = (decis_levl[mil]*(INT32)detl) >> 15L; //06.6.9
decis = (decis_levl[mil]*(INT32)detl) + 16384 >> 15;
if(wd <= decis) break;
}
/* if mil=30 then wd is less than all decision levels */
if(el >= 0) ril = quant26bt_pos[mil];
else ril = quant26bt_neg[mil];
return(ril);
}
/* invqxl is either invqbl or invqal depending on parameters passed */
/* returns dlt, code table is pre-multiplied by 8 */
/* INT32 invqxl(INT32 il,INT32 detl,INT32 *code_table,INT32 mode) */
/* { */
/* INT32 INT32 dlt; */
/* dlt = (INT32)detl*code_table[il >> (mode-1)]; */
/* return((INT32)(dlt >> 15)); */
/* } */
/* logscl - update log quantizer scale factor in lower sub-band */
/* note that nbl is passed and returned */
INT32 logscl(INT32 il,INT32 nbl)
{
//long int wd;
INT32 wd;
//wd = ((INT32)nbl * 127L) >> 7L; /* leak factor 127/128 */ //06.6.9
wd = ((INT32)nbl * 127L) + 64 >> 7;
nbl = wd + wl_code_table[il >> 2];
if(nbl < 0) nbl = 0;
if(nbl > 18432) nbl = 18432;
return(nbl);
}
/* scalel: compute quantizer scale factor in lower or upper sub-band*/
INT32 scalel(INT32 nbl,INT32 shift_constant)
{
INT32 wd1,wd2,wd3;
wd1 = (nbl >> 6) & 31;
wd2 = nbl >> 11;
wd3 = ilb_table[wd1] >> (shift_constant + 1 - wd2);
return(wd3 << 3);
}
/* upzero - inputs: dlt, dlti[0-5], bli[0-5], outputs: updated bli[0-5] */
/* also implements delay of bli and update of dlti from dlt */
void upzero(INT32 dlt,INT32 *dlti,INT32 *bli)
{
INT32 i,wd2,wd3;
/*if dlt is zero, then no sum INT32o bli */
if(dlt == 0)
{
for(i = 0 ; i < 6 ; i++)
{
//bli[i] = ((255L*bli[i]) >> 8L); /* leak factor of 255/256 */ //06.6.9
bli[i] = ((255L*bli[i]) + 128 >> 8);
}
}
else
{
for(i = 0 ; i < 6 ; i++)
{
if((INT32)dlt*dlti[i] >= 0) wd2 = 128;
else wd2 = -128;
//wd3 = (INT32)((255L*bli[i]) >> 8L); /* leak factor of 255/256 */ //06.6.9
wd3 = (INT32)((255L*bli[i]) + 128 >> 8);
bli[i] = wd2 + wd3;
}
}
/* implement delay line for dlt */
dlti[5] = dlti[4];
dlti[4] = dlti[3];
dlti[3] = dlti[2];
dlti[1] = dlti[0];
dlti[0] = dlt;
return;
}
/* uppol2 - update second predictor coefficient (pole section) */
/* inputs: al1, al2, plt, plt1, plt2. outputs: apl2 */
INT32 uppol2(INT32 al1,INT32 al2,INT32 plt,INT32 plt1,INT32 plt2)
{
//long int wd2,wd4;
INT32 wd2,wd4;
INT32 apl2;
wd2 = 4L*(INT32)al1;
if((INT32)plt*plt1 >= 0L) wd2 = -wd2; /* check same sign */
wd2 = wd2 >> 7; /* gain of 1/128 */
if((INT32)plt*plt2 >= 0L)
{
wd4 = wd2 + 128; /* same sign case */
}
else
{
wd4 = wd2 - 128;
}
//apl2 = wd4 + (127L*al2 >> 7L); /* leak factor of 127/128 */ //06.6.9
apl2 = wd4 + (127*al2 + 64 >> 7);
/* apl2 is limited to +-.75 */
if(apl2 > 12288) apl2 = 12288;
if(apl2 < -12288) apl2 = -12288;
return(apl2);
}
/* uppol1 - update first predictor coefficient (pole section) */
/* inputs: al1, apl2, plt, plt1. outputs: apl1 */
INT32 uppol1(INT32 al1,INT32 apl2,INT32 plt,INT32 plt1)
{
//long int wd2;
INT32 wd2;
INT32 wd3,apl1;
//wd2 = ((INT32)al1*255L) >> 8L; /* leak factor of 255/256 */ //06.6.9
wd2 = ((INT32)al1*255) + 128 >> 8;
if((INT32)plt*plt1 >= 0L)
{
apl1 = wd2 + 192; /* same sign case */
}
else
{
apl1 = wd2 - 192;
}
/* note: wd3= .9375-.75 is always positive */
wd3 = 15360 - apl2; /* limit value */
if(apl1 > wd3) apl1 = wd3;
if(apl1 < -wd3) apl1 = -wd3;
return(apl1);
}
/* INVQAH: inverse adaptive quantizer for the higher sub-band */
/* returns dh, code table is pre-multiplied by 8 */
/* INT32 invqah(INT32 ih,INT32 deth) */
/* { */
/* INT32 INT32 rdh; */
/* rdh = ((INT32)deth*qq2_code2_table[ih]) >> 15L ; */
/* return((INT32)(rdh )); */
/* } */
/* logsch - update log quantizer scale factor in higher sub-band */
/* note that nbh is passed and returned */
INT32 logsch(INT32 ih,INT32 nbh)
{
INT32 wd;
//wd = ((INT32)nbh * 127L) >> 7L; /* leak factor 127/128 */ //06.6.9
wd = ((INT32)nbh * 127) + 64 >> 7;
nbh = wd + wh_code_table[ih];
if(nbh < 0) nbh = 0;
if(nbh > 22528) nbh = 22528;
return(nbh);
}
//#ifndef Seoul_Mate
//INT32 main()
INT16 inPut(INT16 *test_data, INT16 *compressed, INT16 *result, INT16 n)
{
INT32 i,j,f/*,answer*/;
//static INT32 test_data[SIZE*2],compressed[SIZE],result[SIZE*2];
/* reset, initialize required memory */
//reset();
/* read in amplitude and frequency for test data */
/* scanf("%d",&j);
scanf("%d",&f); */
//j = 10; f = 2000; /* k鰎s men, anv鋘ds INT32e */
/* 16 KHz sample rate */
/* XXmain_0, MAX: 2 */
/* Since the number of times we loop in my_sin depends on the argument we
add the fact: xxmain_0:[]: */
//for(i = 0 ; i < SIZE ; i++) {
// test_data[i] = (INT32)j*my_cos(f*PI*i);
//}
/* MAX: 2 */
/*******Antar att test_data[0] = 10 och test_data[1]=-6 fr錸 ovan, *******
och att anropet i forloopen blir encode(test_data[0],test_data[0]);
och encode(test_data[1],test_data[1]), eftersom att den annars g錼
*******鰒er array gr鋘sen *******/
//for(i = 0 ; i < IN_END ; i += 2)
for(i = 0 ; i < n ; i += 2)
{
//compressed[i/2] = encode(test_data[i],test_data[i+1]);
encode(test_data[i],test_data[i+1]);
compressed[i] = data1;
compressed[i+1] = data2;
}
/* MAX: 2 */
//for(i = 0 ; i < IN_END ; i += 2)
for(i = 0 ; i < n ; i += 2)
{
//decode(compressed[i/2]);
decode(compressed[i],compressed[i+1]);
result[i] = xout1;
result[i+1] = xout2;
}
/*
for( ; j < 32767 ; j++) {
i=IN_END-1;
prINT32f("\n%4d %4d %4d %4d %4d",j,compressed[i/2] >> 6,compressed[i/2] & 63,result[i],result[i-1]);
}
*/
/* prINT32 ih, il */
/*
for(i = 0 ; i < IN_END/2 ; i++) prINT32f("\n%4d %2d %2d",
i,compressed[i] >> 6,compressed[i] & 63);
*/
return result[i]+result[i+1];
}
//#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -