📄 libtommath.c
字号:
* embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y){ int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) {#ifdef LTM_NO_NEG_EXP return MP_VAL;#else /* LTM_NO_NEG_EXP */#ifdef BN_MP_INVMOD_C mp_int tmpG, tmpX; int err; /* first compute 1/G mod P */ if ((err = mp_init(&tmpG)) != MP_OKAY) { return err; } if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { mp_clear(&tmpG); return err; } /* now get |X| */ if ((err = mp_init(&tmpX)) != MP_OKAY) { mp_clear(&tmpG); return err; } if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { mp_clear_multi(&tmpG, &tmpX, NULL); return err; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); mp_clear_multi(&tmpG, &tmpX, NULL); return err;#else #error mp_exptmod would always fail /* no invmod */ return MP_VAL;#endif#endif /* LTM_NO_NEG_EXP */ }/* modified diminished radix reduction */#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) if (mp_reduce_is_2k_l(P) == MP_YES) { return s_mp_exptmod(G, X, P, Y, 1); }#endif#ifdef BN_MP_DR_IS_MODULUS_C /* is it a DR modulus? */ dr = mp_dr_is_modulus(P);#else /* default to no */ dr = 0;#endif#ifdef BN_MP_REDUCE_IS_2K_C /* if not, is it a unrestricted DR modulus? */ if (dr == 0) { dr = mp_reduce_is_2k(P) << 1; }#endif /* if the modulus is odd or dr != 0 use the montgomery method */#ifdef BN_MP_EXPTMOD_FAST_C if (mp_isodd (P) == 1 || dr != 0) { return mp_exptmod_fast (G, X, P, Y, dr); } else {#endif#ifdef BN_S_MP_EXPTMOD_C /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod (G, X, P, Y, 0);#else#error mp_exptmod could fail /* no exptmod for evens */ return MP_VAL;#endif#ifdef BN_MP_EXPTMOD_FAST_C }#endif}/* compare two ints (signed)*/static int mp_cmp (mp_int * a, mp_int * b){ /* compare based on sign */ if (a->sign != b->sign) { if (a->sign == MP_NEG) { return MP_LT; } else { return MP_GT; } } /* compare digits */ if (a->sign == MP_NEG) { /* if negative compare opposite direction */ return mp_cmp_mag(b, a); } else { return mp_cmp_mag(a, b); }}/* compare a digit */static int mp_cmp_d(mp_int * a, mp_digit b){ /* compare based on sign */ if (a->sign == MP_NEG) { return MP_LT; } /* compare based on magnitude */ if (a->used > 1) { return MP_GT; } /* compare the only digit of a to b */ if (a->dp[0] > b) { return MP_GT; } else if (a->dp[0] < b) { return MP_LT; } else { return MP_EQ; }}#ifndef LTM_NO_NEG_EXP/* hac 14.61, pp608 */static int mp_invmod (mp_int * a, mp_int * b, mp_int * c){ /* b cannot be negative */ if (b->sign == MP_NEG || mp_iszero(b) == 1) { return MP_VAL; }#ifdef BN_FAST_MP_INVMOD_C /* if the modulus is odd we can use a faster routine instead */ if (mp_isodd (b) == 1) { return fast_mp_invmod (a, b, c); }#endif#ifdef BN_MP_INVMOD_SLOW_C return mp_invmod_slow(a, b, c);#endif#ifndef BN_FAST_MP_INVMOD_C#ifndef BN_MP_INVMOD_SLOW_C#error mp_invmod would always fail#endif#endif return MP_VAL;}#endif /* LTM_NO_NEG_EXP *//* get the size for an unsigned equivalent */static int mp_unsigned_bin_size (mp_int * a){ int size = mp_count_bits (a); return (size / 8 + ((size & 7) != 0 ? 1 : 0));}#ifndef LTM_NO_NEG_EXP/* hac 14.61, pp608 */static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c){ mp_int x, y, u, v, A, B, C, D; int res; /* b cannot be negative */ if (b->sign == MP_NEG || mp_iszero(b) == 1) { return MP_VAL; } /* init temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) { return res; } /* x = a, y = b */ if ((res = mp_mod(a, b, &x)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy (b, &y)) != MP_OKAY) { goto LBL_ERR; } /* 2. [modified] if x,y are both even then return an error! */ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { res = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy (&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy (&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set (&A, 1); mp_set (&D, 1);top: /* 4. while u is even do */ while (mp_iseven (&u) == 1) { /* 4.1 u = u/2 */ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if A or B is odd then */ if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { /* A = (A+y)/2, B = (B-x)/2 */ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* A = A/2, B = B/2 */ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven (&v) == 1) { /* 5.1 v = v/2 */ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if C or D is odd then */ if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { /* C = (C+y)/2, D = (D-x)/2 */ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* C = C/2, D = D/2 */ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp (&u, &v) != MP_LT) { /* u = u - v, A = A - C, B = B - D */ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, C = C - A, D = D - B */ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero (&u) == 0) goto top; /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d (&v, 1) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* if its too low */ while (mp_cmp_d(&C, 0) == MP_LT) { if ((res = mp_add(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&C, b) != MP_LT) { if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* C is now the inverse */ mp_exch (&C, c); res = MP_OKAY;LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); return res;}#endif /* LTM_NO_NEG_EXP *//* compare maginitude of two ints (unsigned) */static int mp_cmp_mag (mp_int * a, mp_int * b){ int n; mp_digit *tmpa, *tmpb; /* compare based on # of non-zero digits */ if (a->used > b->used) { return MP_GT; } if (a->used < b->used) { return MP_LT; } /* alias for a */ tmpa = a->dp + (a->used - 1); /* alias for b */ tmpb = b->dp + (a->used - 1); /* compare based on digits */ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { if (*tmpa > *tmpb) { return MP_GT; } if (*tmpa < *tmpb) { return MP_LT; } } return MP_EQ;}/* reads a unsigned char array, assumes the msb is stored first [big endian] */static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c){ int res; /* make sure there are at least two digits */ if (a->alloc < 2) { if ((res = mp_grow(a, 2)) != MP_OKAY) { return res; } } /* zero the int */ mp_zero (a); /* read the bytes in */ while (c-- > 0) { if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { return res; }#ifndef MP_8BIT a->dp[0] |= *b++; a->used += 1;#else a->dp[0] = (*b & MP_MASK); a->dp[1] |= ((*b++ >> 7U) & 1); a->used += 2;#endif } mp_clamp (a); return MP_OKAY;}/* store in unsigned [big endian] format */static int mp_to_unsigned_bin (mp_int * a, unsigned char *b){ int x, res; mp_int t; if ((res = mp_init_copy (&t, a)) != MP_OKAY) { return res; } x = 0; while (mp_iszero (&t) == 0) {#ifndef MP_8BIT b[x++] = (unsigned char) (t.dp[0] & 255);#else b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));#endif if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { mp_clear (&t); return res; } } bn_reverse (b, x); mp_clear (&t); return MP_OKAY;}/* shift right by a certain bit count (store quotient in c, optional remainder in d) */static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d){ mp_digit D, r, rr; int x, res; mp_int t; /* if the shift count is <= 0 then we do no work */ if (b <= 0) { res = mp_copy (a, c); if (d != NULL) { mp_zero (d); } return res; } if ((res = mp_init (&t)) != MP_OKAY) { return res; } /* get the remainder */ if (d != NULL) { if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { mp_clear (&t); return res; } } /* copy */ if ((res = mp_copy (a, c)) != MP_OKAY) { mp_clear (&t); return res; } /* shift by as many digits in the bit count */ if (b >= (int)DIGIT_BIT) { mp_rshd (c, b / DIGIT_BIT); } /* shift any bit count < DIGIT_BIT */ D = (mp_digit) (b % DIGIT_BIT); if (D != 0) { register mp_digit *tmpc, mask, shift; /* mask */ mask = (((mp_digit)1) << D) - 1; /* shift for lsb */ shift = DIGIT_BIT - D; /* alias */ tmpc = c->dp + (c->used - 1); /* carry */ r = 0; for (x = c->used - 1; x >= 0; x--) { /* get the lower bits of this word in a temp */ rr = *tmpc & mask; /* shift the current word and mix in the carry bits from the previous word */ *tmpc = (*tmpc >> D) | (r << shift); --tmpc; /* set the carry to the carry bits of the current word found above */ r = rr; } } mp_clamp (c); if (d != NULL) { mp_exch (&t, d); } mp_clear (&t); return MP_OKAY;}static int mp_init_copy (mp_int * a, mp_int * b){ int res; if ((res = mp_init (a)) != MP_OKAY) { return res; } return mp_copy (b, a);}/* set to zero */static void mp_zero (mp_int * a){ int n; mp_digit *tmp; a->sign = MP_ZPOS; a->used = 0; tmp = a->dp; for (n = 0; n < a->alloc; n++) { *tmp++ = 0; }}/* copy, b = a */static int mp_copy (mp_int * a, mp_int * b){ int res, n; /* if dst == src do nothing */ if (a == b) { return MP_OKAY; } /* grow dest */ if (b->alloc < a->used) { if ((res = mp_grow (b, a->used)) != MP_OKAY) { return res; } } /* zero b and copy the parameters over */ { register mp_digit *tmpa, *tmpb; /* pointer aliases */ /* source */ tmpa = a->dp; /* destination */ tmpb = b->dp; /* copy all the digits */ for (n = 0; n < a->used; n++) { *tmpb++ = *tmpa++; } /* clear high digits */ for (; n < b->used; n++) { *tmpb++ = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -