📄 milenage.c
字号:
/* * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208) * Copyright (c) 2006-2007 <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. * * This file implements an example authentication algorithm defined for 3GPP * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow * EAP-AKA to be tested properly with real USIM cards. * * This implementations assumes that the r1..r5 and c1..c5 constants defined in * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00, * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to * be AES (Rijndael). */#include "includes.h"#include "common.h"#include "milenage.h"#include "aes_wrap.h"/** * milenage_f1 - Milenage f1 and f1* algorithms * @opc: OPc = 128-bit value derived from OP and K * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @sqn: SQN = 48-bit sequence number * @amf: AMF = 16-bit authentication management field * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL * Returns: 0 on success, -1 on failure */static int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s){ u8 tmp1[16], tmp2[16], tmp3[16]; int i; /* tmp1 = TEMP = E_K(RAND XOR OP_C) */ for (i = 0; i < 16; i++) tmp1[i] = _rand[i] ^ opc[i]; if (aes_128_encrypt_block(k, tmp1, tmp1)) return -1; /* tmp2 = IN1 = SQN || AMF || SQN || AMF */ memcpy(tmp2, sqn, 6); memcpy(tmp2 + 6, amf, 2); memcpy(tmp2 + 8, tmp2, 8); /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */ /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */ for (i = 0; i < 16; i++) tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i]; /* XOR with TEMP = E_K(RAND XOR OP_C) */ for (i = 0; i < 16; i++) tmp3[i] ^= tmp1[i]; /* XOR with c1 (= ..00, i.e., NOP) */ /* f1 || f1* = E_K(tmp3) XOR OP_c */ if (aes_128_encrypt_block(k, tmp3, tmp1)) return -1; for (i = 0; i < 16; i++) tmp1[i] ^= opc[i]; if (mac_a) memcpy(mac_a, tmp1, 8); /* f1 */ if (mac_s) memcpy(mac_s, tmp1 + 8, 8); /* f1* */ return 0;}/** * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms * @opc: OPc = 128-bit value derived from OP and K * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @res: Buffer for RES = 64-bit signed response (f2), or %NULL * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL * Returns: 0 on success, -1 on failure */static int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand, u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar){ u8 tmp1[16], tmp2[16], tmp3[16]; int i; /* tmp2 = TEMP = E_K(RAND XOR OP_C) */ for (i = 0; i < 16; i++) tmp1[i] = _rand[i] ^ opc[i]; if (aes_128_encrypt_block(k, tmp1, tmp2)) return -1; /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */ /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */ /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */ /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */ /* f2 and f5 */ /* rotate by r2 (= 0, i.e., NOP) */ for (i = 0; i < 16; i++) tmp1[i] = tmp2[i] ^ opc[i]; tmp1[15] ^= 1; /* XOR c2 (= ..01) */ /* f5 || f2 = E_K(tmp1) XOR OP_c */ if (aes_128_encrypt_block(k, tmp1, tmp3)) return -1; for (i = 0; i < 16; i++) tmp3[i] ^= opc[i]; if (res) memcpy(res, tmp3 + 8, 8); /* f2 */ if (ak) memcpy(ak, tmp3, 6); /* f5 */ /* f3 */ if (ck) { /* rotate by r3 = 0x20 = 4 bytes */ for (i = 0; i < 16; i++) tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i]; tmp1[15] ^= 2; /* XOR c3 (= ..02) */ if (aes_128_encrypt_block(k, tmp1, ck)) return -1; for (i = 0; i < 16; i++) ck[i] ^= opc[i]; } /* f4 */ if (ik) { /* rotate by r4 = 0x40 = 8 bytes */ for (i = 0; i < 16; i++) tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i]; tmp1[15] ^= 4; /* XOR c4 (= ..04) */ if (aes_128_encrypt_block(k, tmp1, ik)) return -1; for (i = 0; i < 16; i++) ik[i] ^= opc[i]; } /* f5* */ if (akstar) { /* rotate by r5 = 0x60 = 12 bytes */ for (i = 0; i < 16; i++) tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i]; tmp1[15] ^= 8; /* XOR c5 (= ..08) */ if (aes_128_encrypt_block(k, tmp1, tmp1)) return -1; for (i = 0; i < 6; i++) akstar[i] = tmp1[i] ^ opc[i]; } return 0;}/** * milenage_generate - Generate AKA AUTN,IK,CK,RES * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @amf: AMF = 16-bit authentication management field * @k: K = 128-bit subscriber key * @sqn: SQN = 48-bit sequence number * @_rand: RAND = 128-bit random challenge * @autn: Buffer for AUTN = 128-bit authentication token * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL * @res: Buffer for RES = 64-bit signed response (f2), or %NULL * @res_len: Max length for res; set to used length or 0 on failure */void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k, const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len){ int i; u8 mac_a[16], ak[6]; if (*res_len < 8) { *res_len = 0; return; } if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) || milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) { *res_len = 0; return; } *res_len = 8; /* AUTN = (SQN ^ AK) || AMF || MAC */ for (i = 0; i < 6; i++) autn[i] = sqn[i] ^ ak[i]; memcpy(autn + 6, amf, 2); memcpy(autn + 8, mac_a, 8);}/** * milenage_auts - Milenage AUTS validation * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @auts: AUTS = 112-bit authentication token from client * @sqn: Buffer for SQN = 48-bit sequence number * Returns: 0 = success (sqn filled), -1 on failure */int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts, u8 *sqn){ u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */ u8 ak[6], mac_s[8]; int i; if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak)) return -1; for (i = 0; i < 6; i++) sqn[i] = auts[i] ^ ak[i]; if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) || memcmp(mac_s, auts + 6, 8) != 0) return -1; return 0;}/** * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @sres: Buffer for SRES = 32-bit SRES * @kc: Buffer for Kc = 64-bit Kc * Returns: 0 on success, -1 on failure */int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc){ u8 res[8], ck[16], ik[16]; int i; if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL)) return -1; for (i = 0; i < 8; i++) kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];#ifdef GSM_MILENAGE_ALT_SRES memcpy(sres, res, 4);#else /* GSM_MILENAGE_ALT_SRES */ for (i = 0; i < 4; i++) sres[i] = res[i] ^ res[i + 4];#endif /* GSM_MILENAGE_ALT_SRES */ return 0;}#ifdef TEST_MAIN_MILENAGEextern int wpa_debug_level;/** * milenage_opc - Determine OPc from OP and K * @op: OP = 128-bit operator variant algorithm configuration field * @k: K = 128-bit subscriber key * @opc: Buffer for OPc = 128-bit value derived from OP and K */static void milenage_opc(const u8 *op, const u8 *k, u8 *opc){ int i; /* OP_C = OP XOR E_K(OP) */ aes_128_encrypt_block(k, op, opc); for (i = 0; i < 16; i++) opc[i] ^= op[i];}struct gsm_milenage_test_set { u8 ki[16]; u8 rand[16]; u8 opc[16]; u8 sres1[4]; u8 sres2[4]; u8 kc[8];};static const struct gsm_milenage_test_set gsm_test_sets[] ={ { /* 3GPP TS 55.205 v6.0.0 - Test Set 1 */ { 0x46, 0x5b, 0x5c, 0xe8, 0xb1, 0x99, 0xb4, 0x9f, 0xaa, 0x5f, 0x0a, 0x2e, 0xe2, 0x38, 0xa6, 0xbc }, { 0x23, 0x55, 0x3c, 0xbe, 0x96, 0x37, 0xa8, 0x9d, 0x21, 0x8a, 0xe6, 0x4d, 0xae, 0x47, 0xbf, 0x35 }, { 0xcd, 0x63, 0xcb, 0x71, 0x95, 0x4a, 0x9f, 0x4e, 0x48, 0xa5, 0x99, 0x4e, 0x37, 0xa0, 0x2b, 0xaf }, { 0x46, 0xf8, 0x41, 0x6a }, { 0xa5, 0x42, 0x11, 0xd5 }, { 0xea, 0xe4, 0xbe, 0x82, 0x3a, 0xf9, 0xa0, 0x8b } }, { /* 3GPP TS 55.205 v6.0.0 - Test Set 2 */ { 0xfe, 0xc8, 0x6b, 0xa6, 0xeb, 0x70, 0x7e, 0xd0, 0x89, 0x05, 0x75, 0x7b, 0x1b, 0xb4, 0x4b, 0x8f }, { 0x9f, 0x7c, 0x8d, 0x02, 0x1a, 0xcc, 0xf4, 0xdb, 0x21, 0x3c, 0xcf, 0xf0, 0xc7, 0xf7, 0x1a, 0x6a }, { 0x10, 0x06, 0x02, 0x0f, 0x0a, 0x47, 0x8b, 0xf6, 0xb6, 0x99, 0xf1, 0x5c, 0x06, 0x2e, 0x42, 0xb3 }, { 0x8c, 0x30, 0x8a, 0x5e }, { 0x80, 0x11, 0xc4, 0x8c }, { 0xaa, 0x01, 0x73, 0x9b, 0x8c, 0xaa, 0x97, 0x6d } }, { /* 3GPP TS 55.205 v6.0.0 - Test Set 3 */ { 0x9e, 0x59, 0x44, 0xae, 0xa9, 0x4b, 0x81, 0x16, 0x5c, 0x82, 0xfb, 0xf9, 0xf3, 0x2d, 0xb7, 0x51 }, { 0xce, 0x83, 0xdb, 0xc5, 0x4a, 0xc0, 0x27, 0x4a, 0x15, 0x7c, 0x17, 0xf8, 0x0d, 0x01, 0x7b, 0xd6 }, { 0xa6, 0x4a, 0x50, 0x7a, 0xe1, 0xa2, 0xa9, 0x8b, 0xb8, 0x8e, 0xb4, 0x21, 0x01, 0x35, 0xdc, 0x87 }, { 0xcf, 0xbc, 0xe3, 0xfe }, { 0xf3, 0x65, 0xcd, 0x68 }, { 0x9a, 0x8e, 0xc9, 0x5f, 0x40, 0x8c, 0xc5, 0x07 } }, { /* 3GPP TS 55.205 v6.0.0 - Test Set 4 */ { 0x4a, 0xb1, 0xde, 0xb0, 0x5c, 0xa6, 0xce, 0xb0, 0x51, 0xfc, 0x98, 0xe7, 0x7d, 0x02, 0x6a, 0x84 }, { 0x74, 0xb0, 0xcd, 0x60, 0x31, 0xa1, 0xc8, 0x33, 0x9b, 0x2b, 0x6c, 0xe2, 0xb8, 0xc4, 0xa1, 0x86 }, { 0xdc, 0xf0, 0x7c, 0xbd, 0x51, 0x85, 0x52, 0x90, 0xb9, 0x2a, 0x07, 0xa9, 0x89, 0x1e, 0x52, 0x3e }, { 0x96, 0x55, 0xe2, 0x65 }, { 0x58, 0x60, 0xfc, 0x1b }, { 0xcd, 0xc1, 0xdc, 0x08, 0x41, 0xb8, 0x1a, 0x22 } }, { /* 3GPP TS 55.205 v6.0.0 - Test Set 5 */ { 0x6c, 0x38, 0xa1, 0x16, 0xac, 0x28, 0x0c, 0x45, 0x4f, 0x59, 0x33, 0x2e, 0xe3, 0x5c, 0x8c, 0x4f }, { 0xee, 0x64, 0x66, 0xbc, 0x96, 0x20, 0x2c, 0x5a, 0x55, 0x7a, 0xbb, 0xef, 0xf8, 0xba, 0xbf, 0x63 }, { 0x38, 0x03, 0xef, 0x53, 0x63, 0xb9, 0x47, 0xc6, 0xaa, 0xa2, 0x25, 0xe5, 0x8f, 0xae, 0x39, 0x34 }, { 0x13, 0x68, 0x8f, 0x17 }, { 0x16, 0xc8, 0x23, 0x3f }, { 0xdf, 0x75, 0xbc, 0x5e, 0xa8, 0x99, 0x87, 0x9f } }, { /* 3GPP TS 55.205 v6.0.0 - Test Set 6 */ { 0x2d, 0x60, 0x9d, 0x4d, 0xb0, 0xac, 0x5b, 0xf0, 0xd2, 0xc0, 0xde, 0x26, 0x70, 0x14, 0xde, 0x0d }, { 0x19, 0x4a, 0xa7, 0x56, 0x01, 0x38, 0x96, 0xb7, 0x4b, 0x4a, 0x2a, 0x3b, 0x0a, 0xf4, 0x53, 0x9e }, { 0xc3, 0x5a, 0x0a, 0xb0, 0xbc, 0xbf, 0xc9, 0x25, 0x2c, 0xaf, 0xf1, 0x5f, 0x24, 0xef, 0xbd, 0xe0 }, { 0x55, 0x3d, 0x00, 0xb3 }, { 0x8c, 0x25, 0xa1, 0x6c },
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -