⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aes_wrap.c

📁 IEEE802.11 a/b/g 客户端应用程序源代码
💻 C
字号:
/* * AES-based functions * * - AES Key Wrap Algorithm (128-bit KEK) (RFC3394) * - One-Key CBC MAC (OMAC1, i.e., CMAC) hash with AES-128 * - AES-128 CTR mode encryption * - AES-128 EAX mode encryption/decryption * - AES-128 CBC * * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */#include "includes.h"#include "common.h"#include "aes_wrap.h"#include "crypto.h"#ifndef CONFIG_NO_AES_WRAP/** * aes_wrap - Wrap keys with AES Key Wrap Algorithm (128-bit KEK) (RFC3394) * @kek: 16-octet Key encryption key (KEK) * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16 * bytes * @plain: Plaintext key to be wrapped, n * 64 bits * @cipher: Wrapped key, (n + 1) * 64 bits * Returns: 0 on success, -1 on failure */int aes_wrap(const u8 *kek, int n, const u8 *plain, u8 *cipher){	u8 *a, *r, b[16];	int i, j;	void *ctx;	a = cipher;	r = cipher + 8;	/* 1) Initialize variables. */	os_memset(a, 0xa6, 8);	os_memcpy(r, plain, 8 * n);	ctx = aes_encrypt_init(kek, 16);	if (ctx == NULL)		return -1;	/* 2) Calculate intermediate values.	 * For j = 0 to 5	 *     For i=1 to n	 *         B = AES(K, A | R[i])	 *         A = MSB(64, B) ^ t where t = (n*j)+i	 *         R[i] = LSB(64, B)	 */	for (j = 0; j <= 5; j++) {		r = cipher + 8;		for (i = 1; i <= n; i++) {			os_memcpy(b, a, 8);			os_memcpy(b + 8, r, 8);			aes_encrypt(ctx, b, b);			os_memcpy(a, b, 8);			a[7] ^= n * j + i;			os_memcpy(r, b + 8, 8);			r += 8;		}	}	aes_encrypt_deinit(ctx);	/* 3) Output the results.	 *	 * These are already in @cipher due to the location of temporary	 * variables.	 */	return 0;}#endif /* CONFIG_NO_AES_WRAP *//** * aes_unwrap - Unwrap key with AES Key Wrap Algorithm (128-bit KEK) (RFC3394) * @kek: Key encryption key (KEK) * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16 * bytes * @cipher: Wrapped key to be unwrapped, (n + 1) * 64 bits * @plain: Plaintext key, n * 64 bits * Returns: 0 on success, -1 on failure (e.g., integrity verification failed) */int aes_unwrap(const u8 *kek, int n, const u8 *cipher, u8 *plain){	u8 a[8], *r, b[16];	int i, j;	void *ctx;	/* 1) Initialize variables. */	os_memcpy(a, cipher, 8);	r = plain;	os_memcpy(r, cipher + 8, 8 * n);	ctx = aes_decrypt_init(kek, 16);	if (ctx == NULL)		return -1;	/* 2) Compute intermediate values.	 * For j = 5 to 0	 *     For i = n to 1	 *         B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i	 *         A = MSB(64, B)	 *         R[i] = LSB(64, B)	 */	for (j = 5; j >= 0; j--) {		r = plain + (n - 1) * 8;		for (i = n; i >= 1; i--) {			os_memcpy(b, a, 8);			b[7] ^= n * j + i;			os_memcpy(b + 8, r, 8);			aes_decrypt(ctx, b, b);			os_memcpy(a, b, 8);			os_memcpy(r, b + 8, 8);			r -= 8;		}	}	aes_decrypt_deinit(ctx);	/* 3) Output results.	 *	 * These are already in @plain due to the location of temporary	 * variables. Just verify that the IV matches with the expected value.	 */	for (i = 0; i < 8; i++) {		if (a[i] != 0xa6)			return -1;	}	return 0;}#define BLOCK_SIZE 16#ifndef CONFIG_NO_AES_OMAC1static void gf_mulx(u8 *pad){	int i, carry;	carry = pad[0] & 0x80;	for (i = 0; i < BLOCK_SIZE - 1; i++)		pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);	pad[BLOCK_SIZE - 1] <<= 1;	if (carry)		pad[BLOCK_SIZE - 1] ^= 0x87;}/** * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128 * @key: 128-bit key for the hash operation * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure * * This is a mode for using block cipher (AES in this case) for authentication. * OMAC1 was standardized with the name CMAC by NIST in a Special Publication * (SP) 800-38B. */int omac1_aes_128_vector(const u8 *key, size_t num_elem,			 const u8 *addr[], const size_t *len, u8 *mac){	void *ctx;	u8 cbc[BLOCK_SIZE], pad[BLOCK_SIZE];	const u8 *pos, *end;	size_t i, e, left, total_len;	ctx = aes_encrypt_init(key, 16);	if (ctx == NULL)		return -1;	os_memset(cbc, 0, BLOCK_SIZE);	total_len = 0;	for (e = 0; e < num_elem; e++)		total_len += len[e];	left = total_len;	e = 0;	pos = addr[0];	end = pos + len[0];	while (left >= BLOCK_SIZE) {		for (i = 0; i < BLOCK_SIZE; i++) {			cbc[i] ^= *pos++;			if (pos >= end) {				e++;				pos = addr[e];				end = pos + len[e];			}		}		if (left > BLOCK_SIZE)			aes_encrypt(ctx, cbc, cbc);		left -= BLOCK_SIZE;	}	os_memset(pad, 0, BLOCK_SIZE);	aes_encrypt(ctx, pad, pad);	gf_mulx(pad);	if (left || total_len == 0) {		for (i = 0; i < left; i++) {			cbc[i] ^= *pos++;			if (pos >= end) {				e++;				pos = addr[e];				end = pos + len[e];			}		}		cbc[left] ^= 0x80;		gf_mulx(pad);	}	for (i = 0; i < BLOCK_SIZE; i++)		pad[i] ^= cbc[i];	aes_encrypt(ctx, pad, mac);	aes_encrypt_deinit(ctx);	return 0;}/** * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC) * @key: 128-bit key for the hash operation * @data: Data buffer for which a MAC is determined * @data_len: Length of data buffer in bytes * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure * * This is a mode for using block cipher (AES in this case) for authentication. * OMAC1 was standardized with the name CMAC by NIST in a Special Publication * (SP) 800-38B. */int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac){	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);}#endif /* CONFIG_NO_AES_OMAC1 */#ifndef CONFIG_NO_AES_ENCRYPT_BLOCK/** * aes_128_encrypt_block - Perform one AES 128-bit block operation * @key: Key for AES * @in: Input data (16 bytes) * @out: Output of the AES block operation (16 bytes) * Returns: 0 on success, -1 on failure */int aes_128_encrypt_block(const u8 *key, const u8 *in, u8 *out){	void *ctx;	ctx = aes_encrypt_init(key, 16);	if (ctx == NULL)		return -1;	aes_encrypt(ctx, in, out);	aes_encrypt_deinit(ctx);	return 0;}#endif /* CONFIG_NO_AES_ENCRYPT_BLOCK */#ifndef CONFIG_NO_AES_CTR/** * aes_128_ctr_encrypt - AES-128 CTR mode encryption * @key: Key for encryption (16 bytes) * @nonce: Nonce for counter mode (16 bytes) * @data: Data to encrypt in-place * @data_len: Length of data in bytes * Returns: 0 on success, -1 on failure */int aes_128_ctr_encrypt(const u8 *key, const u8 *nonce,			u8 *data, size_t data_len){	void *ctx;	size_t j, len, left = data_len;	int i;	u8 *pos = data;	u8 counter[BLOCK_SIZE], buf[BLOCK_SIZE];	ctx = aes_encrypt_init(key, 16);	if (ctx == NULL)		return -1;	os_memcpy(counter, nonce, BLOCK_SIZE);	while (left > 0) {		aes_encrypt(ctx, counter, buf);		len = (left < BLOCK_SIZE) ? left : BLOCK_SIZE;		for (j = 0; j < len; j++)			pos[j] ^= buf[j];		pos += len;		left -= len;		for (i = BLOCK_SIZE - 1; i >= 0; i--) {			counter[i]++;			if (counter[i])				break;		}	}	aes_encrypt_deinit(ctx);	return 0;}#endif /* CONFIG_NO_AES_CTR */#ifndef CONFIG_NO_AES_EAX/** * aes_128_eax_encrypt - AES-128 EAX mode encryption * @key: Key for encryption (16 bytes) * @nonce: Nonce for counter mode * @nonce_len: Nonce length in bytes * @hdr: Header data to be authenticity protected * @hdr_len: Length of the header data bytes * @data: Data to encrypt in-place * @data_len: Length of data in bytes * @tag: 16-byte tag value * Returns: 0 on success, -1 on failure */int aes_128_eax_encrypt(const u8 *key, const u8 *nonce, size_t nonce_len,			const u8 *hdr, size_t hdr_len,			u8 *data, size_t data_len, u8 *tag){	u8 *buf;	size_t buf_len;	u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE];	int i, ret = -1;	if (nonce_len > data_len)		buf_len = nonce_len;	else		buf_len = data_len;	if (hdr_len > buf_len)		buf_len = hdr_len;	buf_len += 16;	buf = os_malloc(buf_len);	if (buf == NULL)		return -1;	os_memset(buf, 0, 15);	buf[15] = 0;	os_memcpy(buf + 16, nonce, nonce_len);	if (omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac))		goto fail;	buf[15] = 1;	os_memcpy(buf + 16, hdr, hdr_len);	if (omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac))		goto fail;	if (aes_128_ctr_encrypt(key, nonce_mac, data, data_len))		goto fail;	buf[15] = 2;	os_memcpy(buf + 16, data, data_len);	if (omac1_aes_128(key, buf, 16 + data_len, data_mac))		goto fail;	for (i = 0; i < BLOCK_SIZE; i++)		tag[i] = nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i];	ret = 0;fail:	os_free(buf);	return ret;}/** * aes_128_eax_decrypt - AES-128 EAX mode decryption * @key: Key for decryption (16 bytes) * @nonce: Nonce for counter mode * @nonce_len: Nonce length in bytes * @hdr: Header data to be authenticity protected * @hdr_len: Length of the header data bytes * @data: Data to encrypt in-place * @data_len: Length of data in bytes * @tag: 16-byte tag value * Returns: 0 on success, -1 on failure, -2 if tag does not match */int aes_128_eax_decrypt(const u8 *key, const u8 *nonce, size_t nonce_len,			const u8 *hdr, size_t hdr_len,			u8 *data, size_t data_len, const u8 *tag){	u8 *buf;	size_t buf_len;	u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE];	int i;	if (nonce_len > data_len)		buf_len = nonce_len;	else		buf_len = data_len;	if (hdr_len > buf_len)		buf_len = hdr_len;	buf_len += 16;	buf = os_malloc(buf_len);	if (buf == NULL)		return -1;	os_memset(buf, 0, 15);	buf[15] = 0;	os_memcpy(buf + 16, nonce, nonce_len);	if (omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac)) {		os_free(buf);		return -1;	}	buf[15] = 1;	os_memcpy(buf + 16, hdr, hdr_len);	if (omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac)) {		os_free(buf);		return -1;	}	buf[15] = 2;	os_memcpy(buf + 16, data, data_len);	if (omac1_aes_128(key, buf, 16 + data_len, data_mac)) {		os_free(buf);		return -1;	}	os_free(buf);	for (i = 0; i < BLOCK_SIZE; i++) {		if (tag[i] != (nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i]))			return -2;	}	return aes_128_ctr_encrypt(key, nonce_mac, data, data_len);}#endif /* CONFIG_NO_AES_EAX */#ifndef CONFIG_NO_AES_CBC/** * aes_128_cbc_encrypt - AES-128 CBC encryption * @key: Encryption key * @iv: Encryption IV for CBC mode (16 bytes) * @data: Data to encrypt in-place * @data_len: Length of data in bytes (must be divisible by 16) * Returns: 0 on success, -1 on failure */int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len){	void *ctx;	u8 cbc[BLOCK_SIZE];	u8 *pos = data;	int i, j, blocks;	ctx = aes_encrypt_init(key, 16);	if (ctx == NULL)		return -1;	os_memcpy(cbc, iv, BLOCK_SIZE);	blocks = data_len / BLOCK_SIZE;	for (i = 0; i < blocks; i++) {		for (j = 0; j < BLOCK_SIZE; j++)			cbc[j] ^= pos[j];		aes_encrypt(ctx, cbc, cbc);		os_memcpy(pos, cbc, BLOCK_SIZE);		pos += BLOCK_SIZE;	}	aes_encrypt_deinit(ctx);	return 0;}/** * aes_128_cbc_decrypt - AES-128 CBC decryption * @key: Decryption key * @iv: Decryption IV for CBC mode (16 bytes) * @data: Data to decrypt in-place * @data_len: Length of data in bytes (must be divisible by 16) * Returns: 0 on success, -1 on failure */int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len){	void *ctx;	u8 cbc[BLOCK_SIZE], tmp[BLOCK_SIZE];	u8 *pos = data;	int i, j, blocks;	ctx = aes_decrypt_init(key, 16);	if (ctx == NULL)		return -1;	os_memcpy(cbc, iv, BLOCK_SIZE);	blocks = data_len / BLOCK_SIZE;	for (i = 0; i < blocks; i++) {		os_memcpy(tmp, pos, BLOCK_SIZE);		aes_decrypt(ctx, pos, pos);		for (j = 0; j < BLOCK_SIZE; j++)			pos[j] ^= cbc[j];		os_memcpy(cbc, tmp, BLOCK_SIZE);		pos += BLOCK_SIZE;	}	aes_decrypt_deinit(ctx);	return 0;}#endif /* CONFIG_NO_AES_CBC */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -