⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sha256.c

📁 IEEE 802.11a/b/g 服务器端AP
💻 C
字号:
/* * SHA-256 hash implementation and interface functions * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */#include "includes.h"#include "common.h"#include "sha256.h"#include "crypto.h"/** * hmac_sha256_vector - HMAC-SHA256 over data vector (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash (32 bytes) */void hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,			const u8 *addr[], const size_t *len, u8 *mac){	unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */	unsigned char tk[32];	const u8 *_addr[6];	size_t _len[6], i;	if (num_elem > 5) {		/*		 * Fixed limit on the number of fragments to avoid having to		 * allocate memory (which could fail).		 */		return;	}        /* if key is longer than 64 bytes reset it to key = SHA256(key) */        if (key_len > 64) {		sha256_vector(1, &key, &key_len, tk);		key = tk;		key_len = 32;        }	/* the HMAC_SHA256 transform looks like:	 *	 * SHA256(K XOR opad, SHA256(K XOR ipad, text))	 *	 * where K is an n byte key	 * ipad is the byte 0x36 repeated 64 times	 * opad is the byte 0x5c repeated 64 times	 * and text is the data being protected */	/* start out by storing key in ipad */	os_memset(k_pad, 0, sizeof(k_pad));	os_memcpy(k_pad, key, key_len);	/* XOR key with ipad values */	for (i = 0; i < 64; i++)		k_pad[i] ^= 0x36;	/* perform inner SHA256 */	_addr[0] = k_pad;	_len[0] = 64;	for (i = 0; i < num_elem; i++) {		_addr[i + 1] = addr[i];		_len[i + 1] = len[i];	}	sha256_vector(1 + num_elem, _addr, _len, mac);	os_memset(k_pad, 0, sizeof(k_pad));	os_memcpy(k_pad, key, key_len);	/* XOR key with opad values */	for (i = 0; i < 64; i++)		k_pad[i] ^= 0x5c;	/* perform outer SHA256 */	_addr[0] = k_pad;	_len[0] = 64;	_addr[1] = mac;	_len[1] = SHA256_MAC_LEN;	sha256_vector(2, _addr, _len, mac);}/** * hmac_sha256 - HMAC-SHA256 over data buffer (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @data: Pointers to the data area * @data_len: Length of the data area * @mac: Buffer for the hash (20 bytes) */void hmac_sha256(const u8 *key, size_t key_len, const u8 *data,		 size_t data_len, u8 *mac){	hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);}/** * sha256_prf - SHA256-based Pseudo-Random Function (IEEE 802.11r, 8.5.1.5.2) * @key: Key for PRF * @key_len: Length of the key in bytes * @label: A unique label for each purpose of the PRF * @data: Extra data to bind into the key * @data_len: Length of the data * @buf: Buffer for the generated pseudo-random key * @buf_len: Number of bytes of key to generate * * This function is used to derive new, cryptographically separate keys from a * given key. */void sha256_prf(const u8 *key, size_t key_len, const char *label,		const u8 *data, size_t data_len, u8 *buf, size_t buf_len){	u16 counter = 0;	size_t pos, plen;	u8 hash[SHA256_MAC_LEN];	const u8 *addr[4];	size_t len[4];	u8 counter_le[2], length_le[2];	addr[0] = counter_le;	len[0] = 2;	addr[1] = (u8 *) label;	len[1] = os_strlen(label);	addr[2] = data;	len[2] = data_len;	addr[3] = length_le;	len[3] = sizeof(length_le);	WPA_PUT_LE16(length_le, buf_len * 8);	pos = 0;	while (pos < buf_len) {		plen = buf_len - pos;		WPA_PUT_LE16(counter_le, counter);		if (plen >= SHA256_MAC_LEN) {			hmac_sha256_vector(key, key_len, 4, addr, len,					   &buf[pos]);			pos += SHA256_MAC_LEN;		} else {			hmac_sha256_vector(key, key_len, 4, addr, len, hash);			os_memcpy(&buf[pos], hash, plen);			break;		}		counter++;	}}#ifdef INTERNAL_SHA256struct sha256_state {	u64 length;	u32 state[8], curlen;	u8 buf[64];};static void sha256_init(struct sha256_state *md);static int sha256_process(struct sha256_state *md, const unsigned char *in,			  unsigned long inlen);static int sha256_done(struct sha256_state *md, unsigned char *out);/** * sha256_vector - SHA256 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash */void sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,		 u8 *mac){	struct sha256_state ctx;	size_t i;	sha256_init(&ctx);	for (i = 0; i < num_elem; i++)		sha256_process(&ctx, addr[i], len[i]);	sha256_done(&ctx, mac);}/* ===== start - public domain SHA256 implementation ===== *//* This is based on SHA256 implementation in LibTomCrypt that was released into * public domain by Tom St Denis. *//* the K array */static const unsigned long K[64] = {	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,	0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,	0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,	0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,	0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,	0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,	0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,	0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,	0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,	0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};/* Various logical functions */#define RORc(x, y) \( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \   ((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)#define Ch(x,y,z)       (z ^ (x & (y ^ z)))#define Maj(x,y,z)      (((x | y) & z) | (x & y)) #define S(x, n)         RORc((x), (n))#define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n))#define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22))#define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25))#define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3))#define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10))#ifndef MIN#define MIN(x, y) (((x) < (y)) ? (x) : (y))#endif/* compress 512-bits */static int sha256_compress(struct sha256_state *md, unsigned char *buf){	u32 S[8], W[64], t0, t1;	u32 t;	int i;	/* copy state into S */	for (i = 0; i < 8; i++) {		S[i] = md->state[i];	}	/* copy the state into 512-bits into W[0..15] */	for (i = 0; i < 16; i++)		W[i] = WPA_GET_BE32(buf + (4 * i));	/* fill W[16..63] */	for (i = 16; i < 64; i++) {		W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) +			W[i - 16];	}        	/* Compress */#define RND(a,b,c,d,e,f,g,h,i)                          \	t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];	\	t1 = Sigma0(a) + Maj(a, b, c);			\	d += t0;					\	h  = t0 + t1;	for (i = 0; i < 64; ++i) {		RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);		t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; 		S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;	}	/* feedback */	for (i = 0; i < 8; i++) {		md->state[i] = md->state[i] + S[i];	}	return 0;}/* Initialize the hash state */static void sha256_init(struct sha256_state *md){	md->curlen = 0;	md->length = 0;	md->state[0] = 0x6A09E667UL;	md->state[1] = 0xBB67AE85UL;	md->state[2] = 0x3C6EF372UL;	md->state[3] = 0xA54FF53AUL;	md->state[4] = 0x510E527FUL;	md->state[5] = 0x9B05688CUL;	md->state[6] = 0x1F83D9ABUL;	md->state[7] = 0x5BE0CD19UL;}/**   Process a block of memory though the hash   @param md     The hash state   @param in     The data to hash   @param inlen  The length of the data (octets)   @return CRYPT_OK if successful*/static int sha256_process(struct sha256_state *md, const unsigned char *in,			  unsigned long inlen){	unsigned long n;#define block_size 64	if (md->curlen > sizeof(md->buf))		return -1;	while (inlen > 0) {		if (md->curlen == 0 && inlen >= block_size) {			if (sha256_compress(md, (unsigned char *) in) < 0)				return -1;			md->length += block_size * 8;			in += block_size;			inlen -= block_size;		} else {			n = MIN(inlen, (block_size - md->curlen));			os_memcpy(md->buf + md->curlen, in, n);			md->curlen += n;			in += n;			inlen -= n;			if (md->curlen == block_size) {				if (sha256_compress(md, md->buf) < 0)					return -1;				md->length += 8 * block_size;				md->curlen = 0;			}		}	}	return 0;}/**   Terminate the hash to get the digest   @param md  The hash state   @param out [out] The destination of the hash (32 bytes)   @return CRYPT_OK if successful*/static int sha256_done(struct sha256_state *md, unsigned char *out){	int i;	if (md->curlen >= sizeof(md->buf))		return -1;	/* increase the length of the message */	md->length += md->curlen * 8;	/* append the '1' bit */	md->buf[md->curlen++] = (unsigned char) 0x80;	/* if the length is currently above 56 bytes we append zeros	 * then compress.  Then we can fall back to padding zeros and length	 * encoding like normal.	 */	if (md->curlen > 56) {		while (md->curlen < 64) {			md->buf[md->curlen++] = (unsigned char) 0;		}		sha256_compress(md, md->buf);		md->curlen = 0;	}	/* pad upto 56 bytes of zeroes */	while (md->curlen < 56) {		md->buf[md->curlen++] = (unsigned char) 0;	}	/* store length */	WPA_PUT_BE64(md->buf + 56, md->length);	sha256_compress(md, md->buf);	/* copy output */	for (i = 0; i < 8; i++)		WPA_PUT_BE32(out + (4 * i), md->state[i]);	return 0;}/* ===== end - public domain SHA256 implementation ===== */#endif /* INTERNAL_SHA256 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -