⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 srukf.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
📖 第 1 页 / 共 2 页
字号:
                dV = max(pNoise.adaptParams(1)*(dv.^2) , pNoise.adaptParams(2));                ds = diag(Sx);                dv = -ds + sqrt(dV + ds.^2);                Sv = diag(dv);            case 'robbins-monro'                nu = 1/pNoise.adaptParams(1);                dV = (1-nu)*(dv.^2) + nu*diag(KG*(KG*inov*inov')');                ds = diag(Sx);                dv = -ds + sqrt(dV + ds.^2);                Sv = diag(dv);                pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2));            otherwise                error(' [ srukf ]  Process noise update method not allowed.');            end            pNoise.cov = Sv;        %-----------------------------------------------------------        end    end   %... loop over all input vectorsotherwise%===================================== STATE & JOINT ESTIMATION VERSION ===================================================    L = Xdim + Vdim + Ndim;                                   % augmented state dimension    nsp = 2*L+1;                                              % number of sigma-points    kappa = alpha^2*(L+kappa)-L;                              % compound scaling parameter    W = [kappa 0.5 0]/(L+kappa);                              % sigma-point weights    W(3) = W(1) + (1-alpha^2) + beta;    sqrtW = W;    possitive_W3 = (W(3) > 0);                                % is zero'th covariance weight possitive?    sqrtW(1:2) = sqrt(W(1:2));                                % square root weights    sqrtW(3) = sqrt(abs(W(3)));    Sqrt_L_plus_kappa = sqrt(L+kappa);    Zeros_Xdim_X_Vdim     = zeros(Xdim,Vdim);    Zeros_Vdim_X_Xdim     = zeros(Vdim,Xdim);    Zeros_XdimVdim_X_Ndim = zeros(Xdim+Vdim,Ndim);    Zeros_Ndim_X_XdimVdim = zeros(Ndim,Xdim+Vdim);    Sx = Sstate;    Sv = pNoise.cov;         % get process noise covariance Cholesky factor    Sn = oNoise.cov;         % get observation noise covariance Cholesky factor    mu_v = pNoise.mu;      % get process noise mean    mu_n = oNoise.mu;      % get measurement noise mean    if (U1dim==0), UU1=zeros(0,nsp); end    if (U2dim==0), UU2=zeros(0,nsp); end    % if process noise adaptation for joint estimation    if pNoise.adaptMethod        switch InferenceDS.inftype          case 'joint'            idx = pNoise.idxArr(end,:);     % get indeces of parameter block of combo-gaussian noise source            ind1 = idx(1);                  % beginning index of parameter section            ind2 = idx(2);                  % ending index of parameter section            paramdim = ind2-ind1+1;         % infer parameter vector length            dv = diag(Sv);                  % grab diagonal            dv = dv(ind1:ind2);             % extract the part of the diagonal that relates to the 'parameter section'          case 'state'            ind1 = 1;            ind2 = Xdim;            paramdim = Xdim;            dv = diag(Sv);        end    end    %--- Loop over all input vectors -----------------------------------    for i=1:NOV,        if U1dim, UU1 = cvecrep(U1(:,i),nsp); end        if U2dim, UU2 = cvecrep(U2(:,i),nsp); end        %-----------------------------------------        % TIME UPDATE        Z   = cvecrep([state; mu_v; mu_n],nsp);        Zm  = Z;                                         % copy needed for possible angle components section        SzT = [Sx Zeros_Xdim_X_Vdim; Zeros_Vdim_X_Xdim Sv];        Sz  = [SzT Zeros_XdimVdim_X_Ndim; Zeros_Ndim_X_XdimVdim Sn];        sSz = Sqrt_L_plus_kappa * Sz;        sSzM = [sSz -sSz];        Z(:,2:nsp) = Z(:,2:nsp) + sSzM;        %-- Calculate predicted state mean, dealing with angular discontinuities if needed        if isempty(sA_IdxVec)            X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1);  % propagate sigma-points through process model            X_bps = X_;            xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2);            temp1 = X_ - cvecrep(xh_(:,i),nsp);        else            Z(sA_IdxVec,2:nsp) = addangle(Zm(sA_IdxVec,2:nsp), sSzM(sA_IdxVec,:));      % fix sigma-point set for angular components            X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model            X_bps = X_;            state_pivotA = X_(sA_IdxVec,1);                                % extract pivot angle            X_(sA_IdxVec,1) = 0;            X_(sA_IdxVec,2:end) = subangle(X_(sA_IdxVec,2:end),cvecrep(state_pivotA,nsp-1));  % subtract pivot angle mod 2pi            xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2);            xh_(sA_IdxVec,i) = 0;            for k=2:nsp,                xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), W(2)*X_(sA_IdxVec,k));     % calculate UT mean ... mod 2pi            end            sFoo = cvecrep(xh_(:,i),nsp);            temp1 = X_ - sFoo;            temp1(sA_IdxVec,:) = subangle(X_(sA_IdxVec,:), sFoo(sA_IdxVec,:));            xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), state_pivotA);  % add pivot angle back to calculate actual predicted mean        end        [foo,Sx_] = qr((sqrtW(2)*temp1(:,2:nsp))',0);      % QR update of state Cholesky factor. NOTE: here Sx_                                                           % is the UPPER Cholesky factor (Matlab excentricity)        if possitive_W3                                    % deal with possible negative zero'th covariance weight            Sx_ = cholupdate(Sx_,sqrtW(3)*temp1(:,1),'+');        else            Sx_ = cholupdate(Sx_,sqrtW(3)*temp1(:,1),'-'); % NOTE: here Sx_  is the UPPER Cholesky factor (Matlab excentricity)        end        Y_ = InferenceDS.hfun( InferenceDS, X_bps, Z(Xdim+Vdim+1:Xdim+Vdim+Ndim,:), UU2);        %-- Calculate predicted observation mean, dealing with angular discontinuities if needed        if isempty(oA_IdxVec)            yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2);            temp2 = Y_ - cvecrep(yh_(:,i),nsp);        else            obs_pivotA = Y_(oA_IdxVec,1);      % extract pivot angle            Y_(oA_IdxVec,1) = 0;            Y_(oA_IdxVec,2:end) = subangle(Y_(oA_IdxVec,2:end),cvecrep(obs_pivotA,nsp-1));  % subtract pivot angle mod 2pi            yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2);            yh_(oA_IdxVec,i) = 0;            for k=2:nsp,                yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), W(2)*Y_(oA_IdxVec,k));   % calculate UT mean ... mod 2pi            end            oFoo = cvecrep(yh_(:,i),nsp);            temp2 = Y_ - oFoo;            temp2(oA_IdxVec,:) = subangle(Y_(oA_IdxVec,:), oFoo(oA_IdxVec,:));            yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), obs_pivotA);  % add pivot angle back to calculate actual predicted mean        end        [foo,Sy] = qr((sqrtW(2)*temp2(:,2:nsp))',0);       % QR update of observation error Cholesky factor. NOTE: here Sy                                                           % is the UPPER Cholesky factor (Matlab excentricity)        if possitive_W3                                    % deal with possible negative zero'th covariance weight            Sy = cholupdate(Sy,sqrtW(3)*temp2(:,1),'+');        else            Sy = cholupdate(Sy,sqrtW(3)*temp2(:,1),'-');   % NOTE: here Sy  is the UPPER Cholesky factor (Matlab excentricity)        end        Sy = Sy';                                          % We need the lower triangular Cholesky factor        %------------------------------------------------------        % MEASUREMENT UPDATE        Pxy = W(3)*temp1(:,1)*temp2(:,1)' + W(2)*temp1(:,2:nsp)*temp2(:,2:nsp)';        KG = (Pxy/Sy')/Sy;        if isempty(InferenceDS.innovation)            inov(:,i) = obs(:,i) - yh_(:,i);            if ~isempty(oA_IdxVec)              inov(oA_IdxVec,i) = subangle(obs(oA_IdxVec,i), yh_(oA_IdxVec,i));            end        else            inov(:,i) = InferenceDS.innovation( InferenceDS, obs(:,i), yh_(:,i));  % inovation (observation error)        end        if isempty(sA_IdxVec)           xh(:,i) = xh_(:,i) + KG*inov(:,i);        else           upd = KG*inov(:,i);           xh(:,i) = xh_(:,i) + upd;           xh(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), upd(sA_IdxVec));        end        cov_update_vectors = KG*Sy;      % Correct covariance. This is equivalent to :  Px = Px_ - KG*Py*KG';        for j=1:Odim            Sx_ = cholupdate(Sx_,cov_update_vectors(:,j),'-');        end        Sx = Sx_';        state = xh(:,i);        if pNoise.adaptMethod        %--- update process noise if needed for joint estimation ----------------------            switch pNoise.adaptMethod            case 'anneal'                dv = sqrt(max(pNoise.adaptParams(1)*(dv.^2) , pNoise.adaptParams(2)));                Sv(ind1:ind2,ind1:ind2) = diag(dv);            case 'robbins-monro'                nu = 1/pNoise.adaptParams(1);                subKG = KG(end-paramdim+1:end,:);                dv = sqrt((1-nu)*(dv.^2) + nu*diag(subKG*(subKG*inov*inov')'));                Sv(ind1:ind2,ind1:ind2) = diag(dv);                pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2));            otherwise                error(' [ srukf ]  Process noise update method not allowed.');            end            pNoise.cov = Sv;        %-----------------------------------------------------------        end    end   %... loop over all input vectors%====================================================================================================================endif (nargout>4),    InternalVariablesDS.xh_   = xh_;    InternalVariablesDS.Sx_   = Sx_;    InternalVariablesDS.yh_   = yh_;    InternalVariablesDS.inov  = inov;    InternalVariablesDS.Sinov = Sy;    InternalVariablesDS.KG    = KG;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -