📄 cdkf.m
字号:
function [xh, Px, pNoise, oNoise, InternalVariablesDS] = cdkf(state, Pstate, pNoise, oNoise, obs, U1, U2, InferenceDS)% CDKF Central Difference Kalman Filter (Sigma-Point Kalman Filter variant)%% [xh, Px, pNoise, oNoise, InternalVariablesDS] = cdkf(state, Pstate, pNoise, oNoise, obs, U1, U2, InferenceDS)%% This filter assumes the following standard state-space model:%% x(k) = ffun[x(k-1),v(k-1),U1(k-1)]% y(k) = hfun[x(k),n(k),U2(k)]%% where x is the system state, v the process noise, n the observation noise, U1 the exogenous input to the state% transition function, U2 the exogenous input to the state observation function and y the noisy observation of the% system.%% INPUT% state state mean at time k-1 ( xh(k-1) )% Pstate state covariance at time k-1 ( Px(k-1) )% pNoise process noise data structure (must be of type 'gaussian' or 'combo-gaussian')% oNoise observation noise data structure (must be of type 'gaussian' or 'combo-gaussian')% obs noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )% U1 exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )% U2 exogenous input to state observation function starting at time k ( u2(k),u2(k+1),...,u2(k+N-1) )% InferenceDS inference data structure generated by GENINFDS function.%% OUTPUT% xh estimates of state starting at time k ( E[x(t)|y(1),y(2),...,y(t)] for t=k,k+1,...,k+N-1 )% Px state covariance% pNoise process noise data structure (possibly updated)% oNoise observation noise data structure (possibly updated)%% InternalVariablesDS (optional) internal variables data structure% .xh_ predicted state mean ( E[x(t)|y(1),y(2),..y(t-1)] for t=k,k+1,...,k+N-1 )% .Px_ predicted state covariance% .yh_ predicted observation ( E[y(k)|Y(k-1)] )% .inov innovation signal% .Pinov innovation covariance% .KG Kalman gain%% Required InferenceDS fields:% .spkfParams SPKF parameters = [h] with% h : CDKF scale factor / difference step size%% Copyright (c) Oregon Health & Science University (2006)%% This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for% academic use only (see included license file) and can be obtained from% http://choosh.csee.ogi.edu/rebel/. Businesses wishing to obtain a copy of the% software should contact rebel@csee.ogi.edu for commercial licensing information.%% See LICENSE (which should be part of the main toolkit distribution) for more% detail.%=================================================================================================================Xdim = InferenceDS.statedim; % extract state dimensionOdim = InferenceDS.obsdim; % extract observation dimensionU1dim = InferenceDS.U1dim; % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim; % extract exogenous input 2 dimensionVdim = InferenceDS.Vdim; % extract process noise dimensionNdim = InferenceDS.Ndim; % extract observation noise dimensionNOV = size(obs,2); % number of input vectors%------------------------------------------------------------------------------------------------------------------%-- ERROR CHECKINGif (nargin ~= 8) error(' [ cdkf ] Not enough input arguments.'); endif (Xdim~=size(state,1)) error(' [ cdkf ] Prior state dimension differs from InferenceDS.statedim'); endif (Xdim~=size(Pstate,1)) error(' [ cdkf ] Prior state covariance dimension differs from InferenceDS.statedim'); endif (Odim~=size(obs,1)) error(' [ cdkf ] Observation dimension differs from InferenceDS.obsdim'); endif (U1dim~=0), [dim,nop] = size(U1); if (U1dim~=dim) error(' [ cdkf ] Exogenous input U1 dimension differs from InferenceDS.U1dim'); end if (dim & (NOV~=nop)) error(' [ cdkf ] Number of observation vectors and number of exogenous input U1 vectors do not agree!'); endendif (U2dim~=0), [dim,nop] = size(U2); if (U2dim~=dim) error(' [ cdkf ] Exogenous input U2 dimension differs from InferenceDS.U2dim'); end if (dim & (NOV~=nop)) error(' [ cdkf ] Number of observation vectors and number of exogenous input U2 vectors do not agree!'); endend%------------------------------------------------------------------------------------------------------------------xh = zeros(Xdim,NOV);xh_ = zeros(Xdim,NOV);yh_ = zeros(Odim,NOV);inov = zeros(Odim,NOV);%------------------------------------------------------------------------------------------------------------------h = InferenceDS.spkfParams;hh = h^2;W1 = [(hh - Xdim - Vdim)/hh 1/(2*hh); % sigma-point weights set 1 1/(2*h) sqrt(hh-1)/(2*hh)];W2 = W1;W2(1,1) = (hh - Xdim - Ndim)/hh ; % sigma-point weights set 2Zeros_Xdim_X_Vdim = zeros(Xdim,Vdim);Zeros_Vdim_X_Xdim = zeros(Vdim,Xdim);Zeros_Xdim_X_Ndim = zeros(Xdim,Ndim);Zeros_Ndim_X_Xdim = zeros(Ndim,Xdim);% Get index vectors for any of the state or observation vector components that are angular quantities% which have discontinuities at +- Pi radians ?sA_IdxVec = InferenceDS.stateAngleCompIdxVec;oA_IdxVec = InferenceDS.obsAngleCompIdxVec;nsp1 = 2*(Xdim+Vdim) + 1; % number of sigma points (first set)nsp2 = 2*(Xdim+Ndim) + 1; % number of sigma points (second set)if (U1dim==0), UU1 = zeros(0,nsp1); endif (U2dim==0), UU2 = zeros(0,nsp2); endSv = chol(pNoise.cov)'; % matrix square root of process noise covarianceSn = chol(oNoise.cov)'; % matrix square root of measurement noise covarianceSx = chol(Pstate)'; % matrix square root of state covariance%--------------------------------------- Loop over all input vectors --------------------------------------------for i=1:NOV, if U1dim, UU1 = cvecrep(U1(:,i),nsp1); end if U2dim, UU2 = cvecrep(U2(:,i),nsp2); end %------------------------------------------------------ % TIME UPDATE Z = cvecrep([state; pNoise.mu],nsp1); Zm = Z; % copy needed for possible angle components section Sz = [Sx Zeros_Xdim_X_Vdim; Zeros_Vdim_X_Xdim Sv]; hSz = h*Sz; hSzM = [hSz -hSz]; Z(:,2:nsp1) = Z(:,2:nsp1) + hSzM; %-- Calculate predicted state mean, dealing with angular discontinuities if needed if isempty(sA_IdxVec) X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model xh_(:,i) = W1(1,1)*X_(:,1) + W1(1,2)*sum(X_(:,2:nsp1),2); A = W1(2,1) * ( X_(:,2:Xdim+Vdim+1) - X_(:,Xdim+Vdim+2:nsp1) ) ; B = W1(2,2) * ( X_(:,2:Xdim+Vdim+1) + X_(:,Xdim+Vdim+2:nsp1) - cvecrep(2*X_(:,1),Xdim+Vdim)); else Z(sA_IdxVec,2:nsp1) = addangle(Zm(sA_IdxVec,2:nsp1), hSzM(sA_IdxVec,:)); % fix sigma-point set for angular components X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model state_pivotA = X_(sA_IdxVec,1); % extract pivot angle X_(sA_IdxVec,1) = 0; X_(sA_IdxVec,2:end) = subangle(X_(sA_IdxVec,2:end),cvecrep(state_pivotA,nsp1-1)); % subtract pivot angle mod 2pi xh_(:,i) = W1(1,1)*X_(:,1) + W1(1,2)*sum(X_(:,2:nsp1),2); xh_(sA_IdxVec,i) = 0; for k=2:nsp1, xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), W1(1,2)*X_(sA_IdxVec,k)); % calculate CDKF mean ... mod 2pi end A = W1(2,1) * ( X_(:,2:Xdim+Vdim+1) - X_(:,Xdim+Vdim+2:nsp1) ) ; B = W1(2,2) * ( X_(:,2:Xdim+Vdim+1) + X_(:,Xdim+Vdim+2:nsp1) - cvecrep(2*X_(:,1),Xdim+Vdim)); A(sA_IdxVec,:) = subangle(W1(2,1)*X_(sA_IdxVec,2:Xdim+Vdim+1), W1(2,1)*X_(sA_IdxVec,Xdim+Vdim+2:nsp1)); B(sA_IdxVec,:) = addangle(W1(2,2)*X_(sA_IdxVec,2:Xdim+Vdim+1), W1(2,2)*X_(sA_IdxVec,Xdim+Vdim+2:nsp1)); % Note for above line : Remember, X_(sA_IdxVec,1) = 0, so the last term of B expression need not be subtracted xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), state_pivotA); % add pivot angle back to calculate actual predicted mean end [temp,Sx_] = qr([A B]',0); Sx_= Sx_'; Z = cvecrep([xh_(:,i); oNoise.mu],nsp2); Zm = Z; % copy needed for possible angle components section Sz = [Sx_ Zeros_Xdim_X_Ndim; Zeros_Ndim_X_Xdim Sn]; hSz = h*Sz; hSzM = [hSz -hSz]; Z(:,2:nsp2) = Z(:,2:nsp2) + hSzM; %-- Calculate predicted observation mean, dealing with angular discontinuities if needed if isempty(oA_IdxVec) Y_ = InferenceDS.hfun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Ndim,:), UU2); yh_(:,i) = W2(1,1)*Y_(:,1) + W2(1,2)*sum(Y_(:,2:nsp2),2); C = W2(2,1) * ( Y_(:,2:Xdim+Ndim+1) - Y_(:,Xdim+Ndim+2:nsp2) ); D = W2(2,2) * ( Y_(:,2:Xdim+Ndim+1) + Y_(:,Xdim+Ndim+2:nsp2) - cvecrep(2*Y_(:,1),Xdim+Ndim)); else Z(oA_IdxVec,2:nsp2) = addangle(Zm(oA_IdxVec,2:nsp2), hSzM(oA_IdxVec,:)); % fix sigma-point set for angular components Y_ = InferenceDS.hfun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Ndim,:), UU2); obs_pivotA = Y_(oA_IdxVec,1); % extract pivot angle Y_(oA_IdxVec,1) = 0; Y_(oA_IdxVec,2:nsp2) = subangle(Y_(oA_IdxVec,2:nsp2),cvecrep(obs_pivotA,nsp2-1)); % subtract pivot angle mod 2pi yh_(:,i) = W2(1,1)*Y_(:,1) + W2(1,2)*sum(Y_(:,2:nsp2),2); % pediction of observation yh_(oA_IdxVec,i) = 0; for k=2:nsp2, yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), W2(1,2)*Y_(oA_IdxVec,k)); % calculate CDKF mean ... mod 2pi end C = W2(2,1) * ( Y_(:,2:Xdim+Ndim+1) - Y_(:,Xdim+Ndim+2:nsp2) ); D = W2(2,2) * ( Y_(:,2:Xdim+Ndim+1) + Y_(:,Xdim+Ndim+2:nsp2) - cvecrep(2*Y_(:,1),Xdim+Ndim)); C(oA_IdxVec,:) = subangle(W2(2,1)*Y_(oA_IdxVec,2:Xdim+Ndim+1), W2(2,1)*Y_(oA_IdxVec, Xdim+Ndim+2:nsp2)); D(oA_IdxVec,:) = addangle(W2(2,2)*Y_(oA_IdxVec,2:Xdim+Ndim+1), W2(2,2)*Y_(oA_IdxVec, Xdim+Ndim+2:nsp2)); % Note for above line : Remember, Y_(oA_IdxVec,1) = 0, so the last term of D expression need not be subtracted yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), obs_pivotA); % add pivot angle back to calculate actual predicted mean end [temp,Sy] = qr([C D]',0); Sy = Sy'; %------------------------------------------------------ % MEASUREMENT UPDATE Syx1 = C(:,1:Xdim); Syw1 = C(:,Xdim+1:end); Pxy = Sx_*Syx1'; KG = (Pxy / Sy') / Sy; if isempty(InferenceDS.innovation) inov(:,i) = obs(:,i) - yh_(:,i); if ~isempty(oA_IdxVec) inov(oA_IdxVec,i) = subangle(obs(oA_IdxVec,i), yh_(oA_IdxVec,i)); end else inov(:,i) = InferenceDS.innovation( InferenceDS, obs(:,i), yh_(:,i)); % inovation (observation error) end if isempty(sA_IdxVec) xh(:,i) = xh_(:,i) + KG*inov(:,i); else upd = KG*inov(:,i); xh(:,i) = xh_(:,i) + upd; xh(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), upd(sA_IdxVec)); end state = xh(:,i); [temp,Sx] = qr([Sx_-KG*Syx1 KG*Syw1 KG*D]',0); Sx=Sx'; Px = Sx*Sx'; if pNoise.adaptMethod switch InferenceDS.inftype %---------------------- UPDATE PROCESS NOISE SOURCE IF NEEDED -------------------------------------------- case 'parameter' %--- parameter estimation switch pNoise.adaptMethod case 'anneal' pNoise.cov = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov) , pNoise.adaptParams(2))); case 'lambda-decay' pNoise.cov = (1/pNoise.adaptParams(1)-1) * Px; case 'robbins-monro' nu = 1/pNoise.adaptParams(1); pNoise.cov = (1-nu)*pNoise.cov + nu*KG*(KG*inov*inov')'; pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ cdkf ] Unknown process noise adaptation method!'); end Sv = chol(pNoise.cov)'; case 'state' %--- state estimation switch pNoise.adaptMethod case 'robbins-monro' nu = 1/pNoise.adaptParams(1); pNoise.cov = (1-nu)*pNoise.cov + nu*KG*(KG*inov*inov')'; pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ cdkf ] Process noise adaptation method not allowed!'); end Sv = chol(pNoise.cov)'; case 'joint' %--- joint estimation idx = pNoise.idxArr(end,:); % get indexs of parameter block of combo-gaussian noise source ind1 = idx(1); ind2 = idx(2); switch pNoise.adaptMethod case 'anneal' pNoise.cov(ind1:ind2,ind1:ind2) = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov(ind1:ind2,ind1:ind2)), pNoise.adaptParams(2))); case 'lambda-decay' param_length = ind2-ind1+1; pNoise.cov(ind1:ind2,ind1:ind2) = (1/pNoise.adaptParams(1)-1) * Px(end-param_length+1:end,end-param_length+1:end); case 'robbins-monro' param_length = ind2-ind1+1; nu = 1/pNoise.adaptParams(1); subKG = KG(end-param_length+1:end,:); pNoise.cov(ind1:ind2,ind1:ind2) = (1-nu)*pNoise.cov(ind1:ind2,ind1:ind2) + nu*subKG*(subKG*inov*inov')'; pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ cdkf ] Unknown process noise adaptation method!'); end Sv = chol(pNoise.cov)'; %-------------------------------------------------------------------------------------------------- end; endend %--- for loopif (nargout>4), InternalVariablesDS.xh_ = xh_; InternalVariablesDS.Px_ = Sx_*Sx_'; InternalVariablesDS.yh_ = yh_; InternalVariablesDS.inov = inov; InternalVariablesDS.Pinov = Sy*Sy'; InternalVariablesDS.KG = KG;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -