📄 srcdkf.m
字号:
%--- update process noise if needed ----------------------- switch pNoise.adaptMethod case 'anneal' dV = max(pNoise.adaptParams(1)*(dv.^2) , pNoise.adaptParams(2)); ds = diag(Sx); dv = -ds + sqrt(dV + ds.^2); Sv = diag(dv); case 'robbins-monro' nu = 1/pNoise.adaptParams(1); dV = (1-nu)*(dv.^2) + nu*diag(KG*(KG*inov*inov')'); ds = diag(Sx); dv = -ds + sqrt(dV + ds.^2); Sv = diag(dv); pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ srukf ] Process noise update method not allowed.'); end pNoise.cov = Sv; %----------------------------------------------------------- end end %... loop over all input vectorsotherwise%===================================== STATE & JOINT ESTIMATION VERSION ========================================= Zeros_Xdim_X_Vdim = zeros(Xdim,Vdim); Zeros_Vdim_X_Xdim = zeros(Vdim,Xdim); Zeros_Xdim_X_Ndim = zeros(Xdim,Ndim); Zeros_Ndim_X_Xdim = zeros(Ndim,Xdim); nsp1 = 2*(Xdim+Vdim) + 1; % number of sigma points (first set) nsp2 = 2*(Xdim+Ndim) + 1; % number of sigma points (second set) Sv = pNoise.cov; % matrix square root of process noise covariance Sn = oNoise.cov; % matrix square root of measurement noise covariance mu_v = pNoise.mu; % get process noise mean mu_n = oNoise.mu; % get measurement noise mean Sx = Sstate; % matrix square root of state covariance if (U1dim==0), UU1 = zeros(0,nsp1); end if (U2dim==0), UU2 = zeros(0,nsp2); end % if process noise adaptation for joint estimation if pNoise.adaptMethod switch InferenceDS.inftype case 'joint' idx = pNoise.idxArr(end,:); % get indeces of parameter block of combo-gaussian noise source ind1 = idx(1); % beginning index of parameter section ind2 = idx(2); % ending index of parameter section paramdim = ind2-ind1+1; % infer parameter vector length dv = diag(Sv); % grab diagonal dv = dv(ind1:ind2); % extract the part of the diagonal that relates to the 'parameter section' case 'state' ind1 = 1; ind2 = Xdim; paramdim = Xdim; dv = diag(Sv); end end %--- Loop over all input vectors --- for i=1:NOV, if (U1dim), UU1 = cvecrep(U1(:,i),nsp1); end if (U2dim), UU2 = cvecrep(U2(:,i),nsp2); end %------------------------------------------------------ % TIME UPDATE Z = cvecrep([state; pNoise.mu],nsp1); Zm = Z; % copy needed for possible angle components section Sz = [Sx Zeros_Xdim_X_Vdim; Zeros_Vdim_X_Xdim Sv]; hSz = h*Sz; hSzM = [hSz -hSz]; Z(:,2:nsp1) = Z(:,2:nsp1) + hSzM; % build sigma-point set %-- Calculate predicted state mean, dealing with angular discontinuities if needed if isempty(sA_IdxVec) X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model xh_(:,i) = W1(1,1)*X_(:,1) + W1(1,2)*sum(X_(:,2:nsp1),2); A = W1(2,1) * ( X_(:,2:Xdim+Vdim+1) - X_(:,Xdim+Vdim+2:nsp1) ) ; B = W1(2,2) * ( X_(:,2:Xdim+Vdim+1) + X_(:,Xdim+Vdim+2:nsp1) - cvecrep(2*X_(:,1),Xdim+Vdim)); else Z(sA_IdxVec,2:nsp1) = addangle(Zm(sA_IdxVec,2:nsp1), hSzM(sA_IdxVec,:)); % fix sigma-point set for angular components X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model state_pivotA = X_(sA_IdxVec,1); % extract pivot angle X_(sA_IdxVec,1) = 0; X_(sA_IdxVec,2:end) = subangle(X_(sA_IdxVec,2:end), cvecrep(state_pivotA,nsp1-1)); % subtract pivot angle mod 2pi xh_(:,i) = W1(1,1)*X_(:,1) + W1(1,2)*sum(X_(:,2:nsp1),2); xh_(sA_IdxVec,i) = 0; for k=2:nsp1, xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), W1(1,2)*X_(sA_IdxVec,k)); % calculate CDKF mean ... mod 2pi end A = W1(2,1) * ( X_(:,2:Xdim+Vdim+1) - X_(:,Xdim+Vdim+2:nsp1) ) ; B = W1(2,2) * ( X_(:,2:Xdim+Vdim+1) + X_(:,Xdim+Vdim+2:nsp1) - cvecrep(2*X_(:,1),Xdim+Vdim)); A(sA_IdxVec,:) = subangle(W1(2,1)*X_(sA_IdxVec,2:Xdim+Vdim+1), W1(2,1)*X_(sA_IdxVec,Xdim+Vdim+2:nsp1)); B(sA_IdxVec,:) = addangle(W1(2,2)*X_(sA_IdxVec,2:Xdim+Vdim+1), W1(2,2)*X_(sA_IdxVec,Xdim+Vdim+2:nsp1)); % Note for above line : Remember, X_(sA_IdxVec,1) = 0, so the last term of B expression need not be subtracted xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), state_pivotA); % add pivot angle back to calculate actual predicted mean end [temp,Sx_] = qr([A B]',0); Sx_= Sx_'; Z = cvecrep([xh_(:,i); oNoise.mu] ,nsp2); Zm = Z; % copy needed for possible angle components section Sz = [Sx_ Zeros_Xdim_X_Ndim; Zeros_Ndim_X_Xdim Sn]; hSz = h*Sz; hSzM = [hSz -hSz]; Z(:,2:nsp2) = Z(:,2:nsp2) + hSzM; %-- Calculate predicted observation mean, dealing with angular discontinuities if needed if isempty(oA_IdxVec) Y_ = InferenceDS.hfun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Ndim,:), UU2); yh_(:,i) = W2(1,1)*Y_(:,1) + W2(1,2)*sum(Y_(:,2:nsp2),2); C = W2(2,1) * ( Y_(:,2:Xdim+Ndim+1) - Y_(:,Xdim+Ndim+2:nsp2) ); D = W2(2,2) * ( Y_(:,2:Xdim+Ndim+1) + Y_(:,Xdim+Ndim+2:nsp2) - cvecrep(2*Y_(:,1),Xdim+Ndim)); else Z(oA_IdxVec,2:nsp2) = addangle(Zm(oA_IdxVec,2:nsp2), hSzM(oA_IdxVec,:)); % fix sigma-point set for angular components Y_ = InferenceDS.hfun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Ndim,:), UU2); obs_pivotA = Y_(oA_IdxVec,1); % extract pivot angle Y_(oA_IdxVec,1) = 0; Y_(oA_IdxVec,2:nsp2) = subangle(Y_(oA_IdxVec,2:nsp2),cvecrep(obs_pivotA,nsp2-1)); % subtract pivot angle mod 2pi yh_(:,i) = W2(1,1)*Y_(:,1) + W2(1,2)*sum(Y_(:,2:nsp2),2); % pediction of observation yh_(oA_IdxVec,i) = 0; for k=2:nsp2, yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), W2(1,2)*Y_(oA_IdxVec,k)); % calculate CDKF mean ... mod 2pi end C = W2(2,1) * ( Y_(:,2:Xdim+Ndim+1) - Y_(:,Xdim+Ndim+2:nsp2) ); D = W2(2,2) * ( Y_(:,2:Xdim+Ndim+1) + Y_(:,Xdim+Ndim+2:nsp2) - cvecrep(2*Y_(:,1),Xdim+Ndim)); C(oA_IdxVec,:) = subangle(W2(2,1)*Y_(oA_IdxVec,2:Xdim+Ndim+1), W2(2,1)*Y_(oA_IdxVec, Xdim+Ndim+2:nsp2)); D(oA_IdxVec,:) = addangle(W2(2,2)*Y_(oA_IdxVec,2:Xdim+Ndim+1), W2(2,2)*Y_(oA_IdxVec,Xdim+Ndim+2:nsp2)); % Note for above line : Remember, Y_(oA_IdxVec,1) = 0, so the last term of D expression need not be subtracted yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), obs_pivotA); % add pivot angle back to calculate actual predicted mean end [temp,Sy] = qr([C D]',0); Sy = Sy'; %------------------------------------------------------ % MEASUREMENT UPDATE Syx1 = C(:,1:Xdim); Syw1 = C(:,Xdim+1:end); Pxy = Sx_*Syx1'; KG = (Pxy / Sy') / Sy; if isempty(InferenceDS.innovation) inov(:,i) = obs(:,i) - yh_(:,i); if ~isempty(oA_IdxVec) inov(oA_IdxVec,i) = subangle(obs(oA_IdxVec,i), yh_(oA_IdxVec,i)); end else inov(:,i) = InferenceDS.innovation( InferenceDS, obs(:,i), yh_(:,i)); % inovation (observation error) end if isempty(sA_IdxVec) xh(:,i) = xh_(:,i) + KG*inov(:,i); else upd = KG*inov(:,i); xh(:,i) = xh_(:,i) + upd; xh(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), upd(sA_IdxVec)); end state = xh(:,i); [temp,Sx] = qr([Sx_-KG*Syx1 KG*Syw1 KG*D]',0); Sx=Sx'; if pNoise.adaptMethod %--- update process noise if needed for joint estimation ---------------------- switch pNoise.adaptMethod case 'anneal' dv = sqrt(max(pNoise.adaptParams(1)*(dv.^2) , pNoise.adaptParams(2))); Sv(ind1:ind2,ind1:ind2) = diag(dv); case 'robbins-monro' nu = 1/pNoise.adaptParams(1); subKG = KG(end-paramdim+1:end,:); dv = sqrt((1-nu)*(dv.^2) + nu*diag(subKG*(subKG*inov*inov')')); Sv(ind1:ind2,ind1:ind2) = diag(dv); pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ srcdkf ] Process noise update method not allowed.'); end pNoise.cov = Sv; %----------------------------------------------------------- end end %--- loop over all input vectors%====================================================================================================================endif (nargout>4), InternalVariablesDS.xh_ = xh_; InternalVariablesDS.Sx_ = Sx_; InternalVariablesDS.yh_ = yh_; InternalVariablesDS.inov = inov; InternalVariablesDS.Sinov = Sy; InternalVariablesDS.KG = KG;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -