⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gspf.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
字号:
function [estimate, ParticleFilterDS, pNoise, oNoise] = gspf(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)% GSPF  Gaussian Sum Particle Filter%%   This is an implementation of Jayesh H. Kotecha and Petar M. Djuric's%   'Gaussian Sum Particle Filter' as presented in:%%   Jayesh H. Kotecha and Petar M. Djuric, "Gaussian Sum Particle%   Filtering for Dynamic State Space Models", Proceedings of ICASSP-2001,%   Salt Lake City, Utah, May 2001.%%   [estimate, ParticleFilterDS, pNoise, oNoise] = GSPF(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)%%   This filter assumes the following standard state-space model:%%     x(k) = ffun[x(k-1),v(k-1),U1(k-1)]%     y(k) = hfun[x(k),n(k),U2(k)]%%   where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state%   transition function, u2 the exogenous input to the state observation function and y the noisy observation of the%   system.%%   INPUT%         ParticleFilterDS     Particle filter data structure. (see field definitions below)%         pNoise               (NoiseDS) process noise data structure  (must be of type 'gmm')%         oNoise               (NoiseDS) observation noise data structure%         obs                  noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )%         U1                   exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )%         U2                   exogenous input to state observation function starting at time k  ( u2(k),u2(k+1),...,u2(k+N-1) )%         InferenceDS          Inference data structure generated by GENINFDS function.%%   OUTPUT%         estimate             State estimate generated from posterior distribution of state given all observation. Type of%                              estimate is specified by InferenceDS.estimateType%         ParticleFilterDS     Updated Particle filter data structure.%         pNoise               process noise data structure     (possibly updated)%         oNoise               observation noise data structure (possibly updated)%%   ParticleFilterDS fields:%         .N                   (scalar) number of particles to use%         .stateGMM            (gmm) Gaussian mixture model of state distribution with the following field:%                  .M            (scalar) number of mixture components in GMM%                  .mu           (statedim-by-M) buffer of mean vectors (centroids) of state GMM components%                  .cov          (statedim-by-statedim-my-M) buffer of covariance matrices of state GMM components%                  .cov_type     (string) covariance matrix type ('full','sqrt','diag','swrt-diag') 'sqrt' is preferred.%                  .weights      (1-by-M) state GMM component weights (priors)%%%   Required InferenceDS fields:%         .estimateType        (string) Estimate type : 'mean', 'mode', etc.%%   NOTE : All covariances are assumed to be of type 'sqrt', i.e. Cholesky factors.%%   See also%   PF, SPPF
%   Copyright (c) Oregon Health & Science University (2006)
%
%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for
%   academic use only (see included license file) and can be obtained from
%   http://choosh.csee.ogi.edu/rebel/.  Businesses wishing to obtain a copy of the
%   software should contact rebel@csee.ogi.edu for commercial licensing information.
%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================if (nargin ~= 7) error(' [ gspf ] Not enough input arguments.'); endswitch pNoise.ns_typecase 'gmm'otherwise  error(' [ gspf ] Process noise source must be of type : gmm (Gaussian Mixture Model)');endXdim  = InferenceDS.statedim;                            % extract state dimensionOdim  = InferenceDS.obsdim;                              % extract observation dimensionU1dim = InferenceDS.U1dim;                               % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim;                               % extract exogenous input 2 dimensionVdim  = InferenceDS.Vdim;                                % extract process noise dimensionNdim  = InferenceDS.Ndim;                                % extract observation noise dimensionnumP = ParticleFilterDS.N;            % number of particles to use for SIRstateGMM = ParticleFilterDS.stateGMM;G    = stateGMM.M;      % number of components in state GMMK    = pNoise.M;        % number of components in process noise GMMGK  = G*K;sampleBuf1 = zeros(Xdim,numP,G);     % sample buffer : (sample dimension) X (number of samples) X (number of mixcomps)sampleBuf2 = zeros(Xdim,numP,GK);stateWNew = zeros(1,GK);sampleBuf3 = zeros(Xdim,numP,GK);impWeights = zeros(GK,numP);stateMu  = stateGMM.mu;stateCov = stateGMM.cov;stateW   = stateGMM.weights;cov_type = stateGMM.cov_type;switch cov_typecase {'full','diag'}  error(' [ gspf ] Currently the GSPF algorithm only support state GMMs which has ''sqrt'' covariance types.');endstateMuNew  = zeros(Xdim,GK);stateCovNew = zeros(Xdim,Xdim,GK);pNoiseW = pNoise.weights;ones_numP = ones(numP,1);ones_Xdim = ones(1,Xdim);ones_GK   = ones(GK,1);NOV = size(obs,2);                                       % number of input vectorsif (U1dim==0), UU1=zeros(0,numP); endif (U2dim==0), UU2=zeros(0,numP); endestimate   = zeros(Xdim,NOV);%================================================================================================%--- MAIN LOOP over all data vectorsfor i=1:NOV,    OBStemp = obs(:,i);                % inline cvecrep    OBS = OBStemp(:,ones_numP);    if U1dim      Utemp = U1(:,i);      UU1 = Utemp(:,ones_numP);        % inline cvecrep    end    if U2dim      Utemp = U2(:,i);      UU2 = Utemp(:,ones_numP);        % inline cvecrep    end    %-----------------------------------------------------------------------    % TIME UPDATE    for g=1:G,                                 % draw M samples from each state GMM component        temp_mu = stateMu(:,g);        % It is assumed that the covariances are Cholesky factors        sampleBuf1(:,:,g) = stateCov(:,:,g) * randn(Xdim,numP) + temp_mu(:,ones_numP);    end    for k=1:K,        cS  = pNoise.cov(:,:,k);       % get process noise GMM component covariance        cMu = pNoise.mu(:,k);        cMuBuf = cMu(:,ones_numP);        for g=1:G,            gk = g + (k-1)*G;            pNoiseBuf = cS * randn(Vdim,numP) + cMuBuf;            sampleBuf2(:,:,gk) = InferenceDS.ffun( InferenceDS, sampleBuf1(:,:,g), pNoiseBuf, UU1);            stateWNew(1,gk) = stateW(1,g) * pNoiseW(1,k);        end    end    stateWNew = stateWNew / sum(stateWNew);    for gk=1:GK,                                    % inline sample mean and covariance        muFoo = sum(sampleBuf2(:,:,gk),2)/numP;        stateMuNew(:,gk) = muFoo;        muFoo = muFoo(:,ones_numP);        Xfoo = sampleBuf2(:,:,gk) - muFoo;        [foo,covFoo] = qr(Xfoo',0);        stateCovNew(:,:,gk) = covFoo'/sqrt(numP-1);    end    %-----------------------------------------------------------------------    % MEASUREMENT UPDATE    % Calculate observed samples and importance weights    for gk=1:GK,        temp_mu = stateMuNew(:,gk);        sampleBuf3(:,:,gk) = stateCovNew(:,:,gk) * randn(Xdim,numP) + temp_mu(:,ones_numP);        impWeights(gk,:) = InferenceDS.likelihood( InferenceDS, OBS, sampleBuf3(:,:,gk), UU2, oNoise) + 1e-99;    end    weightNorm = 0;    % Calculate updated state mixcomp means, covariances and weights    for gk=1:GK,        weightFoo = impWeights(gk,:);        impWeightM = weightFoo(ones_Xdim,:);   % inline rvecrep        impWeightNorm = sum(weightFoo);        muFoo2 = sum(impWeightM.*sampleBuf3(:,:,gk),2) / impWeightNorm;        stateMuNew(:,gk) = muFoo2;        xdel = sampleBuf3(:,:,gk) - muFoo2(:,ones_numP); % inline cvecrep        weightSFoo = sqrt(weightFoo);        impWeightSM = weightSFoo(ones_Xdim,:);        Xfoo = impWeightSM.*xdel;        [foo,covFoo] = qr(Xfoo',0);        stateCovNew(:,:,gk) = covFoo'/sqrt(impWeightNorm);        stateWNew(:,gk) = stateWNew(:,gk)*impWeightNorm;   % part 1 of equation (11)        weightNorm = weightNorm + impWeightNorm;    end    % Calculate updated and normalized mixcomp weights    stateWNew = stateWNew / weightNorm;                   % part 2 of equation (11)    stateWNew = stateWNew / sum(stateWNew);               % normalize    %-----------------------------------------------------------------------    % CALCULATE ESTIMATE    switch InferenceDS.estimateType    case 'mean'        muFoo = sum(stateWNew(ones_Xdim,:).*stateMuNew,2);        estimate(:,i) = muFoo;    otherwise        error(' [ sppf ] Unknown estimate type.');    end    %-----------------------------------------------------------------------    % RESAMPLE MIXTURE COMPONENTS    resampleIdx = residualresample(1:GK,stateWNew);    [fooIdx,rIdx]=sort(rand(1,GK));                  % inline randperm    rIdx=rIdx(1:G);    idx = resampleIdx(rIdx);    stateMu = stateMuNew(:,idx);    stateCov = stateCovNew(:,:,idx);    stateW = (1/G) * ones(1,G);    if pNoise.adaptMethod        error('  [ gspf ] Process noise adaptation not supported yet for GMM noise sources.');    end%--------------------------------------------------------------------------end     %.. loop over input vectorsParticleFilterDS.stateGMM.cov      = stateCov;ParticleFilterDS.stateGMM.mu       = stateMu;ParticleFilterDS.stateGMM.weights  = stateW;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -