⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geninfds.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
📖 第 1 页 / 共 5 页
字号:
            D(1:dimH0,dimX+dimU1+1:end) = extD(hfun_idx,:);            varargout{k} = D;        %--- H = dhfun/dn        case 'H'            H = zeros(InferenceDS.obsdim, InferenceDS.Ndim);            ext_state_2 = model.ffun( model, ext_state_1, ext_proc_noise, ext_U1);            extC = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'C');            extG = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'G');            extH = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'H');            tempCG = extC*extG;            H(1:dimH0,1:dimV) = tempCG(hfun_idx,:);            H(1:dimH0,dimV+1:end) = extH(hfun_idx,:);            varargout{k} = H;        %----        otherwise            error('[ InferenceDS.linearize ] Unknown linearization term.');        end    end%--------------------------------------------------------------------------------------function varargout = linearize_parameter_bothp(InferenceDS, state, V, N, U1, U2, varargin)    %  LINEARIZE_PARAMETER_BOTHP  Linearization function of meta system for parameter estimation using both ffun    %                          and hfun from the underlying GSSM.    %    %    varargout = linearize_parameter_bothp(InferenceDS, state, V, N, U1, U2, varargin)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) meta system state vector    %         V               : (c-vector) meta system process noise vector    %         N               : (c-vector) meta system observation noise vector    %         U1              : (c-vector) meta system exogenous input 1    %         U2              : (c-vector) meta system exogenous input 2    %         varargin        : (strings) linearization terms wanted, e.g. 'A','B','G',....    %    OUTPUT    %         varargout       : (matrices) linearization terms corresponding with varargin strings    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U1    -> this is usually an empty matrix    %   U2    -> [external_state(k-1) external_U1(k-1) external_state(k) external_U2(k)]'    %   V     -> synthetic process noise (speeds up convergence)    %   N     -> [external_process_noise(k-1) external_observation_noise(k)]'    % Setup temporary model to use for linearization purposes    model = InferenceDS.model;                                                      % copy existing model    if ~isempty(state),        model = model.setparams( model, state, InferenceDS.paramParamIdxVec);   % set parameters according to state variable    end    dimX  = model.statedim;%    dimO  = model.obsdim;    dimV  = model.Vdim;    dimN  = model.Ndim;    dimU1 = model.U1dim;%    dimU2 = model.U2dim;    ext_state_1     = U2(1:dimX);    ext_proc_noise  = N(1:dimV);    ext_U1          = U2(dimX+1:dimX+dimU1);    ext_state_2     = U2(dimX+dimU1+1:dimX+dimU1+dimX);    ext_obs_noise   = N(dimV+1:dimV+dimN);    ext_U2          = U2(dimX+dimU1+dimX+1:end);    ffun_idx = InferenceDS.paramFFunOutIdxVec;    hfun_idx = InferenceDS.paramHFunOutIdxVec;    dimF0 = length(ffun_idx);    dimH0 = length(hfun_idx);    for k=1:length(varargin)        switch varargin{k}        %--- A = dffun/dstate        case 'A'            varargout{k} = InferenceDS.A;        %--- B = dffun/dU1        case 'B'            varargout{k} = InferenceDS.B;        %--- G = dffun/dv        case 'G'            varargout{k} = InferenceDS.G;        %--- C = dhfun/dstate        case 'C'            C = zeros(InferenceDS.obsdim, InferenceDS.statedim);            extJFW = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'JFW', InferenceDS.paramParamIdxVec);            extJHW = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'JHW', InferenceDS.paramParamIdxVec);            C(1:dimF0,:) = extJFW(ffun_idx,:);            C(dimF0+1:dimF0+dimH0,:) = extJHW(hfun_idx,:);            varargout{k} = C;        %--- D = dhfun/dU2        case 'D'            D = zeros(InferenceDS.obsdim, InferenceDS.U2dim);            extA = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'A');            extB = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'B');            extC = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'C');            extD = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'D');            D(1:dimF0,1:dimX) = extA(ffun_idx,:);            D(1:dimF0,dimX+1:dimX+dimU1) = extB(ffun_idx,:);            D(dimF0+1:dimF0+dimH0,dimX+dimU1+1:dimX+dimU1+dimX) = extC(hfun_idx,:);            D(dimF0+1:dimF0+dimH0,dimX+dimU1+dimX+1:end) = extD(hfun_idx,:);            varargout{k} = D;        %--- H = dhfun/dn        case 'H'            H = zeros(InferenceDS.obsdim, InferenceDS.Ndim);            extG = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'G');            extH = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'H');            H(1:dimF0,1:dimV) = extG(ffun_idx,:);            H(dimF0+1:dimF0+dimH0,dimV+1:end) = extH(hfun_idx,:);            varargout{k} = H;        %----        otherwise            error('[ InferenceDS.linearize ] Unknown linearization term.');        end    end%-------------------------------------------------------------------------------------function varargout = linearize_parameter_f(InferenceDS, state, V, N, U1, U2, varargin)    %  LINEARIZE_PARAMETER_F  Linearization function of meta system for parameter estimation using only    %                         ffun from the underlying GSSM.    %    %    varargout = linearize_parameter_f(InferenceDS, state, V, N, U1, U2, varargin)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) meta system state vector    %         V               : (c-vector) meta system process noise vector    %         N               : (c-vector) meta system observation noise vector    %         U1              : (c-vector) meta system exogenous input 1    %         U2              : (c-vector) meta system exogenous input 2    %         varargin        : (strings) linearization terms wanted, e.g. 'A','B','G',....    %    OUTPUT    %         varargout       : (matrices) linearization terms corresponding with varargin strings    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U1    -> this is usually an empty matrix    %   U2    -> [external_state(k-1) external_U1(k-1)]'    %   V     -> synthetic process noise (speeds up convergence)    %   N     -> [external_process_noise(k-1)]'    % Setup temporary model to use for linearization purposes    model = InferenceDS.model;                                                        % copy existing model    if ~isempty(state),        model = model.setparams( model, state, InferenceDS.paramParamIdxVec);   % set parameters acording to state variable    end    dimX  = model.statedim;    dimV  = model.Vdim;    dimU1 = model.U1dim;    if isempty(U2)        ext_state_1     = [];        ext_U1          = [];    else        ext_state_1     = U2(1:dimX);        ext_U1          = U2(dimX+1:dimX+dimU1);    end    if isempty(N),        ext_proc_noise  = [];    else        ext_proc_noise  = N(1:dimV);    end    ffun_idx = InferenceDS.paramFFunOutIdxVec;    dimF0 = length(ffun_idx);    for k=1:length(varargin)        switch varargin{k}        %--- A = dffun/dstate        case 'A'            varargout{k} = InferenceDS.A;        %--- B = dffun/dU1        case 'B'            varargout{k} = InferenceDS.B;        %--- G = dffun/dv        case 'G'            varargout{k} = InferenceDS.G;        %--- C = dhfun/dstate        case 'C'            C = zeros(InferenceDS.obsdim, InferenceDS.statedim);            extJFW = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'JFW', InferenceDS.paramParamIdxVec);            C = extJFW(ffun_idx,:);            varargout{k} = C;        %--- D = dhfun/dU2        case 'D'            D = zeros(InferenceDS.obsdim, InferenceDS.U2dim);            extA = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'A');            extB = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'B');            D(1:dimF0,1:dimX) = extA(ffun_idx,:);            D(1:dimF0,dimX+1:dimX+dimU1) = extB(ffun_idx,:);            varargout{k} = D;        %--- H = dhfun/dn        case 'H'            H = zeros(InferenceDS.obsdim, InferenceDS.Ndim);            extG = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'G');            H(1:dimF0,1:dimV) = extG(ffun_idx,:);            varargout{k} = H;        %---        otherwise            error('[ InferenceDS.linearize ] Unknown linearization term.');        end    end%-------------------------------------------------------------------------------------function varargout = linearize_parameter_h(InferenceDS, state, V, N, U1, U2, varargin)    %  LINEARIZE_PARAMETER_H  Linearization function of meta system for parameter estimation using    %                         only hfun from the underlying GSSM.    %    %    varargout = linearize_parameter_h(InferenceDS, state, V, N, U1, U2, varargin)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) meta system state vector    %         V               : (c-vector) meta system process noise vector    %         N               : (c-vector) meta system observation noise vector    %         U1              : (c-vector) meta system exogenous input 1    %         U2              : (c-vector) meta system exogenous input 2    %         varargin        : (strings) linearization terms wanted, e.g. 'A','B','G',....    %    OUTPUT    %         varargout       : (matrices) linearization terms corresponding with varargin strings    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U1    -> this is usually an empty matrix    %   U2    -> [external_state(k) external_U2(k)]'    %   V     -> synthetic process noise (speeds up convergence)    %   N     -> [external_observation_noise(k)]'    % Setup temporary model to use for linearization purposes    model = InferenceDS.model;                                                     % copy existing model    model = model.setparams( model, state, InferenceDS.paramParamIdxVec);       % set parameters acording to state variable    dimX  = model.statedim;%    dimO  = model.obsdim;    dimN  = model.Ndim;    dimU2 = model.U2dim;    ext_state_2     = U2(1:dimX);    ext_obs_noise   = N(1:dimN);    ext_U2          = U2(dimX+1:dimX+dimU2);    hfun_idx = InferenceDS.paramHFunOutIdxVec;    dimH0 = length(hfun_idx);    for k=1:length(varargin),        switch varargin{k}        %--- A = dffun/dstate        case 'A'            varargout{k} = InferenceDS.A;        %--- B = dffun/dU1        case 'B'            varargout{k} = InferenceDS.B;        %--- G = dffun/dv        case 'G'            varargout{k} = Infe

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -