⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geninfds.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
📖 第 1 页 / 共 5 页
字号:
%    dimH0 = length(hfun_idx);    % loop over all input vectors    for k=1:nov,       % set model parameter vector       InferenceDS.model = InferenceDS.model.setparams( InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);       HFunOut = InferenceDS.model.hfun( InferenceDS.model, ext_state_2(:,k), ext_obs_noise(:,k), ext_U2(:,k));       observ(:,k) = HFunOut(hfun_idx);    end%-------------------------------------------------------------------------------------function observ = hfun_parameter_both(InferenceDS, state, N, U2)    %  HFUN_PARAMETER_BOTH   State observation function of meta system for parameter estimation using the full system    %                        dynamics of the underlying GSSM as observation, i.e. observ=hfun(ffun(x))    %    %    %    observ = hfun_parameter_both(InferenceDS, state, N, U2)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) system state vector    %         N               : (c-vector) observation noise vector    %         U2              : (c-vector) exogenous input 2    %    OUTPUT    %         observ          : (c-vector) observation vector    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state  -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U2     -> [external_state(k-1) external_U1(k-1) external_U2(k)]'    %   N      -> [external_observation_noise(k)]'    %   observ -> [external_observation(k)]'    [dim,nov] = size(state);    observ = zeros(InferenceDS.obsdim,nov);    dimX  = InferenceDS.model.statedim;    dimV  = InferenceDS.model.Vdim;    dimN  = InferenceDS.model.Ndim;    dimU1 = InferenceDS.model.U1dim;    dimU2 = InferenceDS.model.U2dim;    ext_state_1     = U2(1:dimX,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ext_U2          = U2(dimX+dimU1+1:dimX+dimU1+dimU2,:);    ext_obs_noise   = N(dimV+1:dimV+dimN,:);    ext_proc_noise = N(1:dimV,:);        hfun_idx = InferenceDS.paramHFunOutIdxVec;%    dimH0 = length(hfun_idx);    % loop over all input vectors    for k=1:nov,       % set model parameter vector       InferenceDS.model = InferenceDS.model.setparams( InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);       % calculate X(k)=ffun(X(k-1))       ext_state_2 = InferenceDS.model.ffun( InferenceDS.model, ext_state_1(:,k), ext_proc_noise(:,k), ext_U1(:,k));       HFunOut = InferenceDS.model.hfun( InferenceDS.model, ext_state_2, ext_obs_noise(:,k), ext_U2(:,k));       observ(:,k) = HFunOut(hfun_idx);    end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_f(InferenceDS, obs, state, U2, oNoiseDS)    %  LIKELIHOOD_PARAMETER_F  Calculates the likelood of a real-world observation obs given    %                           a realization of the predicted observation for a given state,    %                           i.e. p(y|x) = p(obs|state)    %    %    llh = likelihood_parameter_f(InferenceDS, obs, observ)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         obs             : (c-vector)  real-world observation vector    %         state           : (c-vector)  meta system state vector    %         U2              : (c-vector) meta system exogenous input 2    %         oNoiseDS        : (NoiseDS)   observation noise data structure    %    OUTPUT    %         llh             : scalar  likelihood    [dim,nov] = size(state);    llh = zeros(1,nov);    dimX  = InferenceDS.model.statedim;    dimO  = InferenceDS.model.obsdim;    dimU1 = InferenceDS.model.U1dim;    ext_state_1     = U2(1:dimX,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ffun_idx = InferenceDS.paramFFunOutIdxVec;    dimF0 = length(ffun_idx);    ext_nextstate = obs(1:dimF0,:);    % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = InferenceDS.model.setparams( InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        % FFUN part of likelihood        llh(k) = InferenceDS.model.prior( InferenceDS.model, ext_nextstate(:,k), ext_state_1(:,k), ext_U1, oNoiseDS);    end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_h(InferenceDS, obs, state, U2, oNoiseDS)    %  LIKELIHOOD_PARAMETER_H  Calculates the likelood of a real-world observation obs given    %                           a realization of the predicted observation for a given state,    %                           i.e. p(y|x) = p(obs|state)    %    %    llh = likelihood_parameter_h(InferenceDS, obs, observ)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         obs             : (c-vector)  real-world observation vector    %         state           : (c-vector)  meta system state vector    %         U2              : (c-vector) meta system exogenous input 2    %         oNoiseDS        : (NoiseDS)   observation noise data structure    %    OUTPUT    %         llh             : scalar  likelihood    [dim,nov] = size(state);    llh = zeros(1,nov);    dimX  = InferenceDS.model.statedim;%    dimO  = InferenceDS.model.obsdim;%    dimU2 = InferenceDS.model.U2dim;    ext_state_2     = U2(1:dimX,:);    ext_U2          = U2(dimX+1:end,:);%    hfun_idx = InferenceDS.paramHFunOutIdxVec;%    dimH0 = length(hfun_idx);    % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = InferenceDS.model.setparams( InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        llh(k) = InferenceDS.model.likelihood( InferenceDS.model, obs(:,k), ext_state_2(:,k), ext_U2(:,k), oNoiseDS);    end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_both(InferenceDS, obs, state, U2, oNoiseDS)    %  LIKELIHOOD_PARAMETER_BOTH  Calculates the likelood of a real-world observation obs given    %                             a realization of the predicted observation for a given state,    %                             i.e. p(y|x) = p(obs|state)    %    %    llh = likelihood_parameter_both(InferenceDS, obs, observ)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         obs             : (c-vector)  real-world observation vector    %         state           : (c-vector)  meta system state vector    %         U2              : (c-vector) meta system exogenous input 2    %         oNoiseDS        : (NoiseDS)   observation noise data structure    %    OUTPUT    %         llh             : scalar  likelihood    [dim,nov] = size(state);    llh = zeros(1,nov);    dimX  = InferenceDS.model.statedim;%    dimO  = InferenceDS.model.obsdim;    dimU1 = InferenceDS.model.U1dim;%    dimU2 = InferenceDS.model.U2dim;    ext_state_1     = U2(1:dimX,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ext_U2          = U2(dimX+dimU1+1:end,:);%    hfun_idx = InferenceDS.paramHFunOutIdxVec;%    dimH0 = length(hfun_idx);        % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = InferenceDS.model.setparams( InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        ext_state_2 = InferenceDS.model.ffun( InferenceDS.model, ext_state_1(:,k), [], ext_U1(:,k));        llh(k) = InferenceDS.model.likelihood( InferenceDS.model, obs(:,k), ext_state_2, ext_U2(:,k), oNoiseDS);    end%--------------------------------------------------------------------------------------function varargout = linearize_parameter_both(InferenceDS, state, V, N, U1, U2, varargin)    %  LINEARIZE_PARAMETER_BOTH  Linearization function of meta system for parameter estimation using both ffun    %                            and hfun from the underlying GSSM in a    %                            cascading (i.e. y=hfun(ffun(state,U1,V),U2,N))    %    %    varargout = linearize_parameter_both(InferenceDS, state, V, N, U1, U2, varargin)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) meta system state vector    %         V               : (c-vector) meta system process noise vector    %         N               : (c-vector) meta system observation noise vector    %         U1              : (c-vector) meta system exogenous input 1    %         U2              : (c-vector) meta system exogenous input 2    %         varargin        : (strings) linearization terms wanted, e.g. 'A','B','G',....    %    OUTPUT    %         varargout       : (matrices) linearization terms corresponding with varargin strings    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U1    -> this is usually an empty matrix    %   U2     -> [external_state(k-1) external_U1(k-1) external_U2(k)]'    %   V     -> synthetic process noise (speeds up convergence)    %   N     -> [external_process_noise(k-1) external_observation_noise(k)]'    % Setup temporary model to use for linearization purposes    model = InferenceDS.model;                                                      % copy existing model    if ~isempty(state),        model = model.setparams( model, state, InferenceDS.paramParamIdxVec);   % set parameters acording to state variable    end    dimX  = model.statedim;%    dimO  = model.obsdim;    dimV  = model.Vdim;    dimN  = model.Ndim;    dimU1 = model.U1dim;%    dimU2 = model.U2dim;    ext_state_1     = U2(1:dimX);    ext_proc_noise  = N(1:dimV);    ext_U1          = U2(dimX+1:dimX+dimU1);    ext_obs_noise   = N(dimV+1:dimV+dimN);    ext_U2          = U2(dimX+dimU1+1:end);%    ffun_idx = InferenceDS.paramFFunOutIdxVec;    hfun_idx = InferenceDS.paramHFunOutIdxVec;%    dimF0 = length(ffun_idx);    dimH0 = length(hfun_idx);    for k=1:length(varargin)        switch varargin{k}        %--- A = dffun/dstate        case 'A'            varargout{k} = InferenceDS.A;        %--- B = dffun/dU1        case 'B'            varargout{k} = InferenceDS.B;        %--- G = dffun/dv        case 'G'            varargout{k} = InferenceDS.G;        %--- C = dhfun/dstate        case 'C'            C = zeros(InferenceDS.obsdim, InferenceDS.statedim);            ext_state_2 = model.ffun( model, ext_state_1, ext_proc_noise, ext_U1);            extC = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'C');            extJFW = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'JFW', InferenceDS.paramParamIdxVec);            extJHW = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'JHW', InferenceDS.paramParamIdxVec);            Ctemp = extC*extJFW + extJHW;            C(1:dimH0,:) = Ctemp(hfun_idx,:);            varargout{k} = C;        %--- D = dhfun/dU2        case 'D'            D = zeros(InferenceDS.obsdim, InferenceDS.U2dim);            ext_state_2 = model.ffun( model, ext_state_1, ext_proc_noise, ext_U1);            extA = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'A');            extB = model.linearize( model, ext_state_1, ext_proc_noise, [], ext_U1, [], 'B');            extC = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'C');            extD = model.linearize( model, ext_state_2, [], ext_obs_noise, [], ext_U2, 'D');            tempCA = extC*extA;            tempCB = extC*extB;            D(1:dimH0,1:dimX) = tempCA(hfun_idx,:);            D(1:dimH0,dimX+1:dimX+dimU1) = tempCB(hfun_idx,:);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -