📄 ukf.m
字号:
function [xh, Px, pNoise, oNoise, InternalVariablesDS] = ukf(state, Pstate, pNoise, oNoise, obs, U1, U2, InferenceDS)% UKF Unscented Kalman Filter%% [xh, Px, pNoise, oNoise, InternalVariablesDS] = ukf(state, Pstate, pNoise, oNoise, obs, U1, U2, InferenceDS)%% This filter assumes the following standard state-space model:%% x(k) = ffun[x(k-1),v(k-1),U1(k-1)]% y(k) = hfun[x(k),n(k),U2(k)]%% where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state% transition function, u2 the exogenous input to the state observation function and y the noisy observation of the% system.%% INPUT% state state mean at time k-1 ( xh(k-1) )% Pstate state covariance at time k-1 ( Px(k-1) )% pNoise process noise data structure (must be of type 'gaussian' or 'combo-gaussian')% oNoise observation noise data structure (must be of type 'gaussian' or 'combo-gaussian')% obs noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )% U1 exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )% U2 exogenous input to state observation function starting at time k ( u2(k),u2(k+1),...,u2(k+N-1) )% InferenceDS inference data structure generated by GENINFDS function.%% OUTPUT% xh estimates of state starting at time k ( E[x(t)|y(1),y(2),...,y(t)] for t=k,k+1,...,k+N-1 )% Px state covariance% pNoise process noise data structure (possibly updated)% oNoise observation noise data structure (possibly updated)%% InternalVariablesDS (optional) internal variables data structure% .xh_ predicted state mean ( E[x(t)|y(1),y(2),..y(t-1)] for t=k,k+1,...,k+N-1 )% .Px_ predicted state covariance% .yh_ predicted observation ( E[y(k)|Y(k-1)] )% .inov inovation signal% .Pinov inovation covariance% .KG Kalman gain%% Required InferenceDS fields:% .spkfParams SPKF parameters = [alpha beta kappa] with% alpha : UKF scale factor% beta : UKF covariance correction factor% kappa : UKF secondary scaling parameter% Copyright (c) Oregon Health & Science University (2006)%% This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for% academic use only (see included license file) and can be obtained from% http://choosh.csee.ogi.edu/rebel/. Businesses wishing to obtain a copy of the% software should contact rebel@csee.ogi.edu for commercial licensing information.%% See LICENSE (which should be part of the main toolkit distribution) for more% detail.%=============================================================================================Xdim = InferenceDS.statedim; % extract state dimensionOdim = InferenceDS.obsdim; % extract observation dimensionU1dim = InferenceDS.U1dim; % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim; % extract exogenous input 2 dimensionVdim = InferenceDS.Vdim; % extract process noise dimensionNdim = InferenceDS.Ndim; % extract observation noise dimensionNOV = size(obs,2); % number of input vectors%------------------------------------------------------------------------------------------------------------------%-- ERROR CHECKINGif (nargin ~= 8) error(' [ ukf ] Not enough input arguments.'); endif (Xdim~=size(state,1)) error('[ ukf ] Prior state dimension differs from InferenceDS.statedim'); endif (Xdim~=size(Pstate,1)) error('[ ukf ] Prior state covariance dimension differs from InferenceDS.statedim'); endif (Odim~=size(obs,1)) error('[ ukf ] Observation dimension differs from InferenceDS.obsdim'); endif U1dim [dim,nop] = size(U1); if (U1dim~=dim) error('[ ukf ] Exogenous input U1 dimension differs from InferenceDS.U1dim'); end if (dim & (NOV~=nop)) error('[ ukf ] Number of observation vectors and number of exogenous input U1 vectors do not agree!'); endendif U2dim [dim,nop] = size(U2); if (U2dim~=dim) error('[ ukf ] Exogenous input U2 dimension differs from InferenceDS.U2dim'); end if (dim & (NOV~=nop)) error('[ ukf ] Number of observation vectors and number of exogenous input U2 vectors do not agree!'); endendxh = zeros(Xdim,NOV);xh_ = zeros(Xdim,NOV);yh_ = zeros(Odim,NOV);inov = zeros(Odim,NOV);%--------------------------------------------------------------------------------------------------------------------% Get UKF scaling parametersalpha = InferenceDS.spkfParams(1);beta = InferenceDS.spkfParams(2);kappa = InferenceDS.spkfParams(3);% Get index vectors for any of the state or observation vector components that are angular quantities% which have discontinuities at +- Pi radians ?sA_IdxVec = InferenceDS.stateAngleCompIdxVec;oA_IdxVec = InferenceDS.obsAngleCompIdxVec;L = Xdim + Vdim + Ndim; % augmented state dimensionnsp = 2*L+1; % number of sigma-pointskappa = alpha^2*(L+kappa)-L; % compound scaling parameterW = [kappa 0.5 0]/(L+kappa); % sigma-point weightsW(3) = W(1) + (1-alpha^2) + beta;Sqrt_L_plus_kappa = sqrt(L+kappa);Zeros_Xdim_X_Vdim = zeros(Xdim,Vdim);Zeros_Vdim_X_Xdim = zeros(Vdim,Xdim);Zeros_XdimVdim_X_Ndim = zeros(Xdim+Vdim,Ndim);Zeros_Ndim_X_XdimVdim = zeros(Ndim,Xdim+Vdim);if (U1dim==0), UU1=zeros(0,nsp); endif (U2dim==0), UU2=zeros(0,nsp); endSv = chol(pNoise.cov)';Sn = chol(oNoise.cov)';%--------------------------------------- Loop over all input vectors --------------------------------------------for i=1:NOV, if U1dim UU1 = cvecrep(U1(:,i),nsp); end if U2dim UU2 = cvecrep(U2(:,i),nsp); end Sx = chol(Pstate)'; %------------------------------------------------------ % TIME UPDATE Z = cvecrep([state; pNoise.mu; oNoise.mu], nsp); Zm = Z; % copy needed for possible angle components section SzT = [Sx Zeros_Xdim_X_Vdim; Zeros_Vdim_X_Xdim Sv]; Sz = [SzT Zeros_XdimVdim_X_Ndim; Zeros_Ndim_X_XdimVdim Sn]; sSz = Sqrt_L_plus_kappa * Sz; sSzM = [sSz -sSz]; Z(:,2:nsp) = Z(:,2:nsp) + sSzM; % build sigma-point set %-- Calculate predicted state mean, dealing with angular discontinuities if needed if isempty(sA_IdxVec) X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model X_bps = X_; xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2); temp1 = X_ - cvecrep(xh_(:,i),nsp); else Z(sA_IdxVec,2:nsp) = addangle(Zm(sA_IdxVec,2:nsp), sSzM(sA_IdxVec,:)); % fix sigma-point set for angular components X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model X_bps = X_; state_pivotA = X_(sA_IdxVec,1); % extract pivot angle X_(sA_IdxVec,1) = 0; X_(sA_IdxVec,2:end) = subangle(X_(sA_IdxVec,2:end),cvecrep(state_pivotA,nsp-1)); % subtract pivot angle mod 2pi xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2); xh_(sA_IdxVec,i) = 0; for k=2:nsp, xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), W(2)*X_(sA_IdxVec,k)); % calculate UT mean ... mod 2pi end sFoo = cvecrep(xh_(:,i),nsp); temp1 = X_ - sFoo; temp1(sA_IdxVec,:) = subangle(X_(sA_IdxVec,:), sFoo(sA_IdxVec,:)); xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), state_pivotA); % add pivot angle back to calculate actual predicted mean end Px_ = W(3)*temp1(:,1)*temp1(:,1)' + W(2)*temp1(:,2:nsp)*temp1(:,2:nsp)'; Y_ = InferenceDS.hfun( InferenceDS, X_bps, Z(Xdim+Vdim+1:Xdim+Vdim+Ndim,:), UU2); % propagate through observation model %-- Calculate predicted observation mean, dealing with angular discontinuities if needed if isempty(oA_IdxVec) yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2); temp2 = Y_ - cvecrep(yh_(:,i),nsp); else obs_pivotA = Y_(oA_IdxVec,1); % extract pivot angle Y_(oA_IdxVec,1) = 0; Y_(oA_IdxVec,2:end) = subangle(Y_(oA_IdxVec,2:end),cvecrep(obs_pivotA,nsp-1)); % subtract pivot angle mod 2pi yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2); yh_(oA_IdxVec,i) = 0; for k=2:nsp, yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), W(2)*Y_(oA_IdxVec,k)); % calculate UT mean ... mod 2pi end oFoo = cvecrep(yh_(:,i),nsp); temp2 = Y_ - oFoo; temp2(oA_IdxVec,:) = subangle(Y_(oA_IdxVec,:), oFoo(oA_IdxVec,:)); yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), obs_pivotA); % add pivot angle back to calculate actual predicted mean end Py = W(3)*temp2(:,1)*temp2(:,1)' + W(2)*temp2(:,2:nsp)*temp2(:,2:nsp)'; %------------------------------------------------------ % MEASUREMENT UPDATE Pxy = W(3)*temp1(:,1)*temp2(:,1)' + W(2)*temp1(:,2:nsp)*temp2(:,2:nsp)'; KG = Pxy / Py; if isempty(InferenceDS.innovation) inov(:,i) = obs(:,i) - yh_(:,i); if ~isempty(oA_IdxVec) inov(oA_IdxVec,i) = subangle(obs(oA_IdxVec,i), yh_(oA_IdxVec,i)); end else inov(:,i) = InferenceDS.innovation( InferenceDS, obs(:,i), yh_(:,i)); % inovation (observation error) end if isempty(sA_IdxVec) xh(:,i) = xh_(:,i) + KG*inov(:,i); else upd = KG*inov(:,i); xh(:,i) = xh_(:,i) + upd; xh(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), upd(sA_IdxVec)); end Px = Px_ - KG*Py*KG'; state = xh(:,i); Pstate = Px; if pNoise.adaptMethod switch InferenceDS.inftype %---------------------- UPDATE PROCESS NOISE SOURCE IF NEEDED -------------------------------------------- case 'parameter' %--- parameter estimation switch pNoise.adaptMethod case 'anneal' pNoise.cov = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov) , pNoise.adaptParams(2))); case 'lambda-decay' pNoise.cov = (1/pNoise.adaptParams(1)-1) * Pstate; case 'robbins-monro' nu = 1/pNoise.adaptParams(1); pNoise.cov = (1-nu)*pNoise.cov + nu*KG*(KG*inov*inov')'; pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ukf]unknown process noise adaptation method!'); end Sv = chol(pNoise.cov)'; case 'joint' %--- joint estimation idx = pNoise.idxArr(end,:); % get indexs of parameter block of combo-gaussian noise source ind1 = idx(1); ind2 = idx(2); idxRange = ind1:ind2; switch pNoise.adaptMethod case 'anneal' pNoise.cov(idxRange,idxRange) = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov(idxRange,idxRange)), pNoise.adaptParams(2))); case 'lambda-decay' param_length = ind2-ind1+1; pNoise.cov(idxRange,idxRange) = (1/pNoise.adaptParams(1)-1) * Pstate(end-param_length+1:end,end-param_length+1:end); case 'robbins-monro' param_length = ind2-ind1+1; nu = 1/pNoise.adaptParams(1); subKG = KG(end-param_length+1:end,:); pNoise.cov(idxRange,idxRange) = (1-nu)*pNoise.cov(idxRange,idxRange) + nu*subKG*(subKG*inov*inov')'; pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2)); otherwise error(' [ukf]unknown process noise adaptation method!'); end Sv = chol(pNoise.cov)'; %-------------------------------------------------------------------------------------------------- end; endend %--- for loopif (nargout>4), InternalVariablesDS.xh_ = xh_; InternalVariablesDS.Px_ = Px_; InternalVariablesDS.yh_ = yh_; InternalVariablesDS.inov = inov; InternalVariablesDS.Pinov = Py; InternalVariablesDS.KG = KG;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -