⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ukf.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
字号:
function [xh, Px, pNoise, oNoise, InternalVariablesDS] = ukf(state, Pstate, pNoise, oNoise, obs, U1, U2, InferenceDS)% UKF  Unscented Kalman Filter%%   [xh, Px, pNoise, oNoise, InternalVariablesDS] = ukf(state, Pstate, pNoise, oNoise, obs, U1, U2, InferenceDS)%%   This filter assumes the following standard state-space model:%%     x(k) = ffun[x(k-1),v(k-1),U1(k-1)]%     y(k) = hfun[x(k),n(k),U2(k)]%%   where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state%   transition function, u2 the exogenous input to the state observation function and y the noisy observation of the%   system.%%   INPUT%         state                state mean at time k-1          ( xh(k-1) )%         Pstate               state covariance at time k-1    ( Px(k-1) )%         pNoise               process noise data structure     (must be of type 'gaussian' or 'combo-gaussian')%         oNoise               observation noise data structure (must be of type 'gaussian' or 'combo-gaussian')%         obs                  noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )%         U1                   exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )%         U2                   exogenous input to state observation function starting at time k  ( u2(k),u2(k+1),...,u2(k+N-1) )%         InferenceDS          inference data structure generated by GENINFDS function.%%   OUTPUT%         xh                   estimates of state starting at time k ( E[x(t)|y(1),y(2),...,y(t)] for t=k,k+1,...,k+N-1 )%         Px                   state covariance%         pNoise               process noise data structure     (possibly updated)%         oNoise               observation noise data structure (possibly updated)%%         InternalVariablesDS  (optional) internal variables data structure%           .xh_                  predicted state mean ( E[x(t)|y(1),y(2),..y(t-1)] for t=k,k+1,...,k+N-1 )%           .Px_                  predicted state covariance%           .yh_                  predicted observation ( E[y(k)|Y(k-1)] )%           .inov                 inovation signal%           .Pinov                inovation covariance%           .KG                   Kalman gain%%   Required InferenceDS fields:%         .spkfParams           SPKF parameters = [alpha beta kappa] with%                                   alpha  :  UKF scale factor%                                   beta   :  UKF covariance correction factor%                                   kappa  :  UKF secondary scaling parameter%   Copyright (c) Oregon Health & Science University (2006)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained from%   http://choosh.csee.ogi.edu/rebel/.  Businesses wishing to obtain a copy of the%   software should contact rebel@csee.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================Xdim  = InferenceDS.statedim;                                % extract state dimensionOdim  = InferenceDS.obsdim;                                  % extract observation dimensionU1dim = InferenceDS.U1dim;                                   % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim;                                   % extract exogenous input 2 dimensionVdim  = InferenceDS.Vdim;                                    % extract process noise dimensionNdim  = InferenceDS.Ndim;                                    % extract observation noise dimensionNOV = size(obs,2);                                           % number of input vectors%------------------------------------------------------------------------------------------------------------------%-- ERROR CHECKINGif (nargin ~= 8) error(' [ ukf ] Not enough input arguments.'); endif (Xdim~=size(state,1)) error('[ ukf ] Prior state dimension differs from InferenceDS.statedim'); endif (Xdim~=size(Pstate,1)) error('[ ukf ] Prior state covariance dimension differs from InferenceDS.statedim'); endif (Odim~=size(obs,1)) error('[ ukf ] Observation dimension differs from InferenceDS.obsdim'); endif U1dim    [dim,nop] = size(U1);    if (U1dim~=dim) error('[ ukf ] Exogenous input U1 dimension differs from InferenceDS.U1dim'); end    if (dim & (NOV~=nop)) error('[ ukf ] Number of observation vectors and number of exogenous input U1 vectors do not agree!'); endendif U2dim    [dim,nop] = size(U2);    if (U2dim~=dim) error('[ ukf ] Exogenous input U2 dimension differs from InferenceDS.U2dim'); end    if (dim & (NOV~=nop)) error('[ ukf ] Number of observation vectors and number of exogenous input U2 vectors do not agree!'); endendxh   = zeros(Xdim,NOV);xh_  = zeros(Xdim,NOV);yh_  = zeros(Odim,NOV);inov = zeros(Odim,NOV);%--------------------------------------------------------------------------------------------------------------------% Get UKF scaling parametersalpha = InferenceDS.spkfParams(1);beta  = InferenceDS.spkfParams(2);kappa = InferenceDS.spkfParams(3);% Get index vectors for any of the state or observation vector components that are angular quantities% which have discontinuities at +- Pi radians ?sA_IdxVec = InferenceDS.stateAngleCompIdxVec;oA_IdxVec = InferenceDS.obsAngleCompIdxVec;L = Xdim + Vdim + Ndim;                                   % augmented state dimensionnsp = 2*L+1;                                              % number of sigma-pointskappa = alpha^2*(L+kappa)-L;                              % compound scaling parameterW = [kappa 0.5 0]/(L+kappa);                              % sigma-point weightsW(3) = W(1) + (1-alpha^2) + beta;Sqrt_L_plus_kappa = sqrt(L+kappa);Zeros_Xdim_X_Vdim     = zeros(Xdim,Vdim);Zeros_Vdim_X_Xdim     = zeros(Vdim,Xdim);Zeros_XdimVdim_X_Ndim = zeros(Xdim+Vdim,Ndim);Zeros_Ndim_X_XdimVdim = zeros(Ndim,Xdim+Vdim);if (U1dim==0), UU1=zeros(0,nsp); endif (U2dim==0), UU2=zeros(0,nsp); endSv = chol(pNoise.cov)';Sn = chol(oNoise.cov)';%--------------------------------------- Loop over all input vectors --------------------------------------------for i=1:NOV,    if U1dim UU1 = cvecrep(U1(:,i),nsp); end    if U2dim UU2 = cvecrep(U2(:,i),nsp); end    Sx = chol(Pstate)';    %------------------------------------------------------    % TIME UPDATE    Z    = cvecrep([state; pNoise.mu; oNoise.mu], nsp);    Zm   = Z;                                                   % copy needed for possible angle components section    SzT  = [Sx Zeros_Xdim_X_Vdim; Zeros_Vdim_X_Xdim Sv];    Sz   = [SzT Zeros_XdimVdim_X_Ndim; Zeros_Ndim_X_XdimVdim Sn];    sSz  = Sqrt_L_plus_kappa * Sz;    sSzM = [sSz -sSz];    Z(:,2:nsp) = Z(:,2:nsp) + sSzM;           % build sigma-point set    %-- Calculate predicted state mean, dealing with angular discontinuities if needed    if isempty(sA_IdxVec)        X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1);  % propagate sigma-points through process model        X_bps = X_;        xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2);        temp1 = X_ - cvecrep(xh_(:,i),nsp);    else        Z(sA_IdxVec,2:nsp) = addangle(Zm(sA_IdxVec,2:nsp), sSzM(sA_IdxVec,:));      % fix sigma-point set for angular components        X_ = InferenceDS.ffun( InferenceDS, Z(1:Xdim,:), Z(Xdim+1:Xdim+Vdim,:), UU1); % propagate sigma-points through process model        X_bps = X_;        state_pivotA = X_(sA_IdxVec,1);                                % extract pivot angle        X_(sA_IdxVec,1) = 0;        X_(sA_IdxVec,2:end) = subangle(X_(sA_IdxVec,2:end),cvecrep(state_pivotA,nsp-1));  % subtract pivot angle mod 2pi        xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2);        xh_(sA_IdxVec,i) = 0;        for k=2:nsp,          xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), W(2)*X_(sA_IdxVec,k));     % calculate UT mean ... mod 2pi        end        sFoo = cvecrep(xh_(:,i),nsp);        temp1 = X_ - sFoo;        temp1(sA_IdxVec,:) = subangle(X_(sA_IdxVec,:), sFoo(sA_IdxVec,:));        xh_(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), state_pivotA);  % add pivot angle back to calculate actual predicted mean    end    Px_ = W(3)*temp1(:,1)*temp1(:,1)' + W(2)*temp1(:,2:nsp)*temp1(:,2:nsp)';    Y_ = InferenceDS.hfun( InferenceDS, X_bps, Z(Xdim+Vdim+1:Xdim+Vdim+Ndim,:), UU2);    % propagate through observation model    %-- Calculate predicted observation mean, dealing with angular discontinuities if needed    if isempty(oA_IdxVec)        yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2);        temp2 = Y_ - cvecrep(yh_(:,i),nsp);    else        obs_pivotA = Y_(oA_IdxVec,1);      % extract pivot angle        Y_(oA_IdxVec,1) = 0;        Y_(oA_IdxVec,2:end) = subangle(Y_(oA_IdxVec,2:end),cvecrep(obs_pivotA,nsp-1));  % subtract pivot angle mod 2pi        yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2);        yh_(oA_IdxVec,i) = 0;        for k=2:nsp,          yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), W(2)*Y_(oA_IdxVec,k));   % calculate UT mean ... mod 2pi        end        oFoo = cvecrep(yh_(:,i),nsp);        temp2 = Y_ - oFoo;        temp2(oA_IdxVec,:) = subangle(Y_(oA_IdxVec,:), oFoo(oA_IdxVec,:));        yh_(oA_IdxVec,i) = addangle(yh_(oA_IdxVec,i), obs_pivotA);  % add pivot angle back to calculate actual predicted mean    end    Py  = W(3)*temp2(:,1)*temp2(:,1)' + W(2)*temp2(:,2:nsp)*temp2(:,2:nsp)';    %------------------------------------------------------    % MEASUREMENT UPDATE    Pxy = W(3)*temp1(:,1)*temp2(:,1)' + W(2)*temp1(:,2:nsp)*temp2(:,2:nsp)';    KG = Pxy / Py;    if isempty(InferenceDS.innovation)        inov(:,i) = obs(:,i) - yh_(:,i);        if ~isempty(oA_IdxVec)          inov(oA_IdxVec,i) = subangle(obs(oA_IdxVec,i), yh_(oA_IdxVec,i));        end    else        inov(:,i) = InferenceDS.innovation( InferenceDS, obs(:,i), yh_(:,i));  % inovation (observation error)    end    if isempty(sA_IdxVec)       xh(:,i) = xh_(:,i) + KG*inov(:,i);    else       upd = KG*inov(:,i);       xh(:,i) = xh_(:,i) + upd;       xh(sA_IdxVec,i) = addangle(xh_(sA_IdxVec,i), upd(sA_IdxVec));    end    Px = Px_ - KG*Py*KG';    state = xh(:,i);    Pstate = Px;    if pNoise.adaptMethod switch InferenceDS.inftype    %---------------------- UPDATE PROCESS NOISE SOURCE IF NEEDED --------------------------------------------    case 'parameter'  %--- parameter estimation        switch pNoise.adaptMethod        case 'anneal'            pNoise.cov = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov) , pNoise.adaptParams(2)));        case 'lambda-decay'            pNoise.cov = (1/pNoise.adaptParams(1)-1) * Pstate;        case 'robbins-monro'            nu = 1/pNoise.adaptParams(1);            pNoise.cov = (1-nu)*pNoise.cov + nu*KG*(KG*inov*inov')';            pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2));        otherwise            error(' [ukf]unknown process noise adaptation method!');        end        Sv = chol(pNoise.cov)';    case 'joint'  %--- joint estimation        idx = pNoise.idxArr(end,:); % get indexs of parameter block of combo-gaussian noise source        ind1 = idx(1); ind2 = idx(2);        idxRange = ind1:ind2;        switch pNoise.adaptMethod        case 'anneal'            pNoise.cov(idxRange,idxRange) = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov(idxRange,idxRange)), pNoise.adaptParams(2)));        case 'lambda-decay'            param_length = ind2-ind1+1;            pNoise.cov(idxRange,idxRange) = (1/pNoise.adaptParams(1)-1) * Pstate(end-param_length+1:end,end-param_length+1:end);        case 'robbins-monro'            param_length = ind2-ind1+1;            nu = 1/pNoise.adaptParams(1);            subKG = KG(end-param_length+1:end,:);            pNoise.cov(idxRange,idxRange) = (1-nu)*pNoise.cov(idxRange,idxRange) + nu*subKG*(subKG*inov*inov')';            pNoise.adaptParams(1) = min(pNoise.adaptParams(1)+1, pNoise.adaptParams(2));        otherwise            error(' [ukf]unknown process noise adaptation method!');        end        Sv = chol(pNoise.cov)';    %--------------------------------------------------------------------------------------------------    end; endend   %--- for loopif (nargout>4),    InternalVariablesDS.xh_   = xh_;    InternalVariablesDS.Px_   = Px_;    InternalVariablesDS.yh_   = yh_;    InternalVariablesDS.inov  = inov;    InternalVariablesDS.Pinov = Py;    InternalVariablesDS.KG    = KG;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -