⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmsppf2.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
字号:
function [estimate, ParticleFilterDS, pNoise, oNoise] = gmsppf2(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)% GMSPPF2 : SPBF  Sigma-Point Bayes Filter%%   [estimate, ParticleFilterDS, pNoise, oNoise] = SPBF2(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)%%   This filter assumes the following standard state-space model:%%     x(k) = ffun[x(k-1),v(k-1),U1(k-1)]%     y(k) = hfun[x(k),n(k),U2(k)]%%   where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state%   transition function, u2 the exogenous input to the state observation function and y the noisy observation of the%   system.%%   INPUT%         ParticleFilterDS     Particle filter data structure. (see field definitions below)%         pNoise               (NoiseDS) process noise data structure  (must be of type 'gmm')%         oNoise               (NoiseDS) observation noise data structure%         obs                  noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )%         U1                   exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )%         U2                   exogenous input to state observation function starting at time k  ( u2(k),u2(k+1),...,u2(k+N-1) )%         InferenceDS          Inference data structure generated by GENINFDS function.%%   OUTPUT%         estimate             State estimate generated from posterior distribution of state given all observation. Type of%                              estimate is specified by InferenceDS.estimateType%         ParticleFilterDS     Updated Particle filter data structure.%         pNoise               process noise data structure     (possibly updated)%         oNoise               observation noise data structure (possibly updated)%%   ParticleFilterDS fields:%         .N                   (scalar) number of particles to use%         .stateGMM            (gmm) Gaussian mixture model of state distribution with the following field:%                  .M            (scalar) number of mixture components in GMM%                  .mu           (statedim-by-M) buffer of mean vectors (centroids) of state GMM components%                  .cov          (statedim-by-statedim-my-M) buffer of covariance matrices of state GMM components%                  .cov_type     (string) covariance matrix type ('full','sqrt','diag','swrt-diag') 'sqrt' is preferred.%                  .weights      (1-by-M) state GMM component weights (priors)%%   Required InferenceDS fields:%         .spkfType            (string) Type of SPKF to use (srukf or srcdkf).%         .estimateType        (string) Estimate type : 'mean', 'mode', etc.%%   NOTE : All covariances are assumed to be of type 'sqrt', i.e. Cholesky factors.%%   See also%   PF, SPPF, GSPF
%   Copyright (c) Oregon Health & Science University (2006)
%
%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for
%   academic use only (see included license file) and can be obtained from
%   http://choosh.csee.ogi.edu/rebel/.  Businesses wishing to obtain a copy of the
%   software should contact rebel@csee.ogi.edu for commercial licensing information.
%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================error(' GMSPPF2 : Sigma-Point Bayes Filter not implemented yet! ');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -