📄 gmsppf2.m
字号:
function [estimate, ParticleFilterDS, pNoise, oNoise] = gmsppf2(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)% GMSPPF2 : SPBF Sigma-Point Bayes Filter%% [estimate, ParticleFilterDS, pNoise, oNoise] = SPBF2(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)%% This filter assumes the following standard state-space model:%% x(k) = ffun[x(k-1),v(k-1),U1(k-1)]% y(k) = hfun[x(k),n(k),U2(k)]%% where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state% transition function, u2 the exogenous input to the state observation function and y the noisy observation of the% system.%% INPUT% ParticleFilterDS Particle filter data structure. (see field definitions below)% pNoise (NoiseDS) process noise data structure (must be of type 'gmm')% oNoise (NoiseDS) observation noise data structure% obs noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )% U1 exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )% U2 exogenous input to state observation function starting at time k ( u2(k),u2(k+1),...,u2(k+N-1) )% InferenceDS Inference data structure generated by GENINFDS function.%% OUTPUT% estimate State estimate generated from posterior distribution of state given all observation. Type of% estimate is specified by InferenceDS.estimateType% ParticleFilterDS Updated Particle filter data structure.% pNoise process noise data structure (possibly updated)% oNoise observation noise data structure (possibly updated)%% ParticleFilterDS fields:% .N (scalar) number of particles to use% .stateGMM (gmm) Gaussian mixture model of state distribution with the following field:% .M (scalar) number of mixture components in GMM% .mu (statedim-by-M) buffer of mean vectors (centroids) of state GMM components% .cov (statedim-by-statedim-my-M) buffer of covariance matrices of state GMM components% .cov_type (string) covariance matrix type ('full','sqrt','diag','swrt-diag') 'sqrt' is preferred.% .weights (1-by-M) state GMM component weights (priors)%% Required InferenceDS fields:% .spkfType (string) Type of SPKF to use (srukf or srcdkf).% .estimateType (string) Estimate type : 'mean', 'mode', etc.%% NOTE : All covariances are assumed to be of type 'sqrt', i.e. Cholesky factors.%% See also% PF, SPPF, GSPF
% Copyright (c) Oregon Health & Science University (2006)
%
% This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for
% academic use only (see included license file) and can be obtained from
% http://choosh.csee.ogi.edu/rebel/. Businesses wishing to obtain a copy of the
% software should contact rebel@csee.ogi.edu for commercial licensing information.
%% See LICENSE (which should be part of the main toolkit distribution) for more% detail.%=============================================================================================error(' GMSPPF2 : Sigma-Point Bayes Filter not implemented yet! ');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -