⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 demtrain.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
字号:
function demtrain(action);
%DEMTRAIN Demonstrate training of MLP network.
%
%   Description
%   DEMTRAIN brings up a simple GUI to show the training of an MLP
%   network on classification and regression problems.  The user should
%   load in a dataset (which should be in Netlab format: see  DATREAD),
%   select the output activation function, the  number of cycles and
%   hidden units and then train the network. The scaled conjugate
%   gradient algorithm is used. A graph shows the evolution of the error:
%   the value is shown  MAX(CEIL(ITERATIONS / 50), 5) cycles.
%
%   Once the network is trained, it is saved to the file MLPTRAIN.NET.
%   The results can then be viewed as a confusion matrix (for
%   classification problems) or a plot of output versus target (for
%   regression problems).
%
%   See also
%   CONFMAT, DATREAD, MLP, NETOPT, SCG
%

%   Copyright (c) Ian T Nabney (1996-2001)

% If run without parameters, initialise gui.
if nargin<1,
  action='initialise';
end;

% Global variable to reference GUI figure
global DEMTRAIN_FIG
% Global array to reference sub-figures for results plots
global DEMTRAIN_RES_FIGS
global NUM_DEMTRAIN_RES_FIGS

if strcmp(action,'initialise'),

  file = '';
  path = '.';

  % Create FIGURE
  fig = figure( ...
    'Name', 'Netlab Demo', ...
    'NumberTitle', 'off', ...
    'Menubar', 'none', ...
    'Color', [0.7529 0.7529 0.7529], ...
    'Visible', 'on');
  % Initialise the globals
  DEMTRAIN_FIG = fig;
  DEMTRAIN_RES_FIGS = 0;
  NUM_DEMTRAIN_RES_FIGS = 0;

  % Create GROUP for buttons
  uicontrol(fig, ...
    'Style', 'frame', ...
    'Units', 'normalized', ...
    'Position', [0.03 0.08 0.94 0.22], ...
    'BackgroundColor', [0.5 0.5 0.5]);

  % Create MAIN axis
  hMain = axes( ...
    'Units', 'normalized', ...
    'Position', [0.10 0.5 0.80 0.40], ...
    'XColor', [0 0 0], ...
    'YColor', [0 0 0], ...
    'Visible', 'on');

  % Create static text for FILENAME and PATH
  hFilename = uicontrol(fig, ...
    'Style', 'text', ...
    'Units', 'normalized', ...
    'BackgroundColor', [0.7529 0.7529 0.7529], ...
    'Position', [0.05 0.32 0.90 0.05], ...
    'HorizontalAlignment', 'center', ...
    'String', 'Please load data file.', ...
    'Visible', 'on');
  hPath = uicontrol(fig, ...
    'Style', 'text', ...
    'Units', 'normalized', ...
    'BackgroundColor', [0.7529 0.7529 0.7529], ...
    'Position', [0.05 0.37 0.90 0.05], ...
    'HorizontalAlignment', 'center', ...
    'String', '', ...
    'Visible', 'on');

  % Create NO OF HIDDEN UNITS slider and text
  hSliderText = uicontrol(fig, ...
    'Style', 'text', ...
    'BackgroundColor', [0.5 0.5 0.5], ...
    'Units', 'normalized', ...
    'Position', [0.27 0.12 0.17 0.04], ...
    'HorizontalAlignment', 'right', ...
    'String', 'Hidden Units: 5');
  hSlider = uicontrol(fig, ...
    'Style', 'slider', ...
    'Units', 'normalized', ...
    'Position', [0.45 0.12 0.26 0.04], ...
    'String', 'Slider', ...
    'Min', 1, 'Max', 25, ...
    'Value', 5, ...
    'Callback', 'demtrain slider_moved');

  % Create ITERATIONS slider and text
  hIterationsText = uicontrol(fig, ...
    'Style', 'text', ...
    'BackgroundColor', [0.5 0.5 0.5], ...
    'Units', 'normalized', ...
    'Position', [0.27 0.21 0.17 0.04], ...
    'HorizontalAlignment', 'right', ...
    'String', 'Iterations: 50');
  hIterations = uicontrol(fig, ...
    'Style', 'slider', ...
    'Units', 'normalized', ...
    'Position', [0.45 0.21 0.26 0.04], ...
    'String', 'Slider', ...
    'Min', 10, 'Max', 500, ...
    'Value', 50, ...
    'Callback', 'demtrain iterations_moved');

  % Create ACTIVATION FUNCTION popup and text
  uicontrol(fig, ...
    'Style', 'text', ...
    'BackgroundColor', [0.5 0.5 0.5], ...
    'Units', 'normalized', ...
    'Position', [0.05 0.20 0.20 0.04], ...
    'HorizontalAlignment', 'center', ...
    'String', 'Activation Function:');
  hPopup = uicontrol(fig, ...
    'Style', 'popup', ...
    'Units', 'normalized', ...
    'Position' , [0.05 0.10 0.20 0.08], ...
    'String', 'Linear|Logistic|Softmax', ...
    'Callback', '');

  % Create MENU
  hMenu1 = uimenu('Label', 'Load Data file...', 'Callback', '');
  uimenu(hMenu1, 'Label', 'Select training data file', ...
    'Callback', 'demtrain get_ip_file');
  hMenu2 = uimenu('Label', 'Show Results...', 'Callback', '');
  uimenu(hMenu2, 'Label', 'Show classification results', ...
    'Callback', 'demtrain classify');
  uimenu(hMenu2, 'Label', 'Show regression results', ...
    'Callback', 'demtrain predict');

  % Create START button
  hStart = uicontrol(fig, ...
    'Units', 'normalized', ...
    'Position' , [0.75 0.2 0.20 0.08], ...
    'String', 'Start Training', ...
    'Enable', 'off',...
    'Callback', 'demtrain start');

  % Create CLOSE button
  uicontrol(fig, ...
    'Units', 'normalized', ...
    'Position' , [0.75 0.1 0.20 0.08], ...
    'String', 'Close', ...
    'Callback', 'demtrain close');

  % Save handles of important UI objects
  hndlList = [hSlider hSliderText hFilename hPath hPopup ...
      hIterations hIterationsText hStart];
  set(fig, 'UserData', hndlList);
  % Hide window from command line
  set(fig, 'HandleVisibility', 'callback');


elseif strcmp(action, 'slider_moved'),

  % Slider has been moved.

  hndlList = get(gcf, 'UserData');
  hSlider = hndlList(1);
  hSliderText = hndlList(2);

  val = get(hSlider, 'Value');
  if rem(val, 1) < 0.5,  % Force up and down arrows to work!
    val = ceil(val);
  else
    val = floor(val);
  end;
  set(hSlider, 'Value', val);
  set(hSliderText, 'String', ['Hidden Units: ' int2str(val)]);


elseif strcmp(action, 'iterations_moved'),

  % Slider has been moved.

  hndlList = get(gcf, 'UserData');
  hSlider = hndlList(6);
  hSliderText = hndlList(7);

  val = get(hSlider, 'Value');
  set(hSliderText, 'String', ['Iterations: ' int2str(val)]);

elseif strcmp(action, 'get_ip_file'),

  % Get data file button pressed.

  hndlList = get(gcf, 'UserData');

  [file, path] = uigetfile('*.dat', 'Get Data File', 50, 50);

  if strcmp(file, '') | file == 0,
    set(hndlList(3), 'String', 'No data file loaded.');
    set(hndlList(4), 'String', '');
  else
    set(hndlList(3), 'String', file);
    set(hndlList(4), 'String', path);
  end;

  % Enable training button
  set(hndlList(8), 'Enable', 'on');

  set(gcf, 'UserData', hndlList);

elseif strcmp(action, 'start'),

  % Start training

  % Get handles of and values from UI objects
  hndlList = get(gcf, 'UserData');
  hSlider = hndlList(1); %              No of hidden units
  hIterations = hndlList(6);
  iterations = get(hIterations, 'Value');

  hFilename = hndlList(3);  %           Data file name
  filename = get(hFilename, 'String');

  hPath = hndlList(4);  %               Data file path
  path = get(hPath, 'String');

  hPopup = hndlList(5);     %           Activation function
  if get(hPopup, 'Value') == 1,
    act_fn = 'linear';
  elseif get(hPopup, 'Value') == 2,
    act_fn = 'logistic';
  else
    act_fn = 'softmax';
  end;
  nhidden = get(hSlider, 'Value');

  % Check data file exists
  if fopen([path '/' filename]) == -1,
    errordlg('Training data file has not been selected.', 'Error');
  else
    % Load data file
    [x,t,nin,nout,ndata] = datread([path filename]);

    % Call MLPTRAIN function repeatedly, while drawing training graph.
    figure(DEMTRAIN_FIG);
    hold on;

    title('Training - please wait.');

    % Create net and find initial error
    net = mlp(size(x, 2), nhidden, size(t, 2), act_fn);
    % Initialise network with inverse variance of 10
    net = mlpinit(net, 10);
    error = mlperr(net, x, t);
    % Work out reporting step: should be sufficiently big to let training
    % algorithm have a chance
    step = max(ceil(iterations / 50), 5);

    % Refresh and rescale axis.
    cla;
    mmax = error;
    min = mmax/10;
    set(gca, 'YScale', 'log');
    ylabel('log Error');
    xlabel('No. iterations');
    axis([0 iterations min mmax+1]);
    iold = 0;
    errold = error;
    % Plot circle to show error of last iteration
    % Setting erase mode to none prevents screen flashing during
    % training
    plot(0, error, 'ro', 'EraseMode', 'none');
    hold on
    drawnow; % Force redraw
    for i = step-1:step:iterations,
      [net, error] = mlptrain(net, x, t, step);
      % Plot line from last point to new point.
      line([iold i], [errold error], 'Color', 'r', 'EraseMode', 'none');
      iold = i;
      errold = error;

      % If new point off scale, redraw axes.
      if error > mmax,
        mmax = error;
        axis([0 iterations min mmax+1]);
      end;
      if error < min
        min = error/10;
        axis([0 iterations min mmax+1]);
      end
      % Plot circle to show error of last iteration
      plot(i, error, 'ro', 'EraseMode', 'none');
      drawnow; % Force redraw
    end;
    save mlptrain.net net
    zoom on;

    title(['Training complete. Final error=', num2str(error)]);

  end;

elseif strcmp(action, 'close'),

  % Close all the figures we have created
  close(DEMTRAIN_FIG);
  for n = 1:NUM_DEMTRAIN_RES_FIGS
    if ishandle(DEMTRAIN_RES_FIGS(n))
      close(DEMTRAIN_RES_FIGS(n));
    end
  end

elseif strcmp(action, 'classify'),

  if fopen('mlptrain.net') == -1,
    errordlg('You have not yet trained the network.', 'Error');
  else

    hndlList = get(gcf, 'UserData');
    filename = get(hndlList(3), 'String');
    path = get(hndlList(4), 'String');
    [x,t,nin,nout,ndata] = datread([path filename]);
    load mlptrain.net net -mat
    y = mlpfwd(net, x);

    % Save results figure so that it can be closed later
    NUM_DEMTRAIN_RES_FIGS = NUM_DEMTRAIN_RES_FIGS + 1;
    DEMTRAIN_RES_FIGS(NUM_DEMTRAIN_RES_FIGS)=conffig(y,t);

  end;

elseif strcmp(action, 'predict'),

  if fopen('mlptrain.net') == -1,
    errordlg('You have not yet trained the network.', 'Error');
  else

    hndlList = get(gcf, 'UserData');
    filename = get(hndlList(3), 'String');
    path = get(hndlList(4), 'String');
    [x,t,nin,nout,ndata] = datread([path filename]);
    load mlptrain.net net -mat
    y = mlpfwd(net, x);

    for i = 1:size(y,2),
      % Save results figure so that it can be closed later
      NUM_DEMTRAIN_RES_FIGS = NUM_DEMTRAIN_RES_FIGS + 1;
      DEMTRAIN_RES_FIGS(NUM_DEMTRAIN_RES_FIGS) = figure;
      hold on;
      title(['Output no ' num2str(i)]);
      plot([0 1], [0 1], 'r:');
      plot(y(:,i),t(:,i), 'o');
      hold off;
    end;
  end;

end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -