📄 gp.m
字号:
function net = gp(nin, covar_fn, prior)
%GP Create a Gaussian Process.
%
% Description
%
% NET = GP(NIN, COVARFN) takes the number of inputs NIN for a Gaussian
% Process model with a single output, together with a string COVARFN
% which specifies the type of the covariance function, and returns a
% data structure NET. The parameters are set to zero.
%
% The fields in NET are
% type = 'gp'
% nin = number of inputs
% nout = number of outputs: always 1
% nwts = total number of weights and covariance function parameters
% bias = logarithm of constant offset in covariance function
% noise = logarithm of output noise variance
% inweights = logarithm of inverse length scale for each input
% covarfn = string describing the covariance function:
% 'sqexp'
% 'ratquad'
% fpar = covariance function specific parameters (1 for squared exponential,
% 2 for rational quadratic)
% trin = training input data (initially empty)
% trtargets = training target data (initially empty)
%
% NET = GP(NIN, COVARFN, PRIOR) sets a Gaussian prior on the parameters
% of the model. PRIOR must contain the fields PR_MEAN and PR_VARIANCE.
% If PR_MEAN is a scalar, then the Gaussian is assumed to be isotropic
% and the additional fields NET.PR_MEAN and PR_VARIANCE are set.
% Otherwise, the Gaussian prior has a mean defined by a column vector
% of parameters PRIOR.PR_MEAN and covariance defined by a column vector
% of parameters PRIOR.PR_VARIANCE. Each element of PRMEAN corresponds
% to a separate group of parameters, which need not be mutually
% exclusive. The membership of the groups is defined by the matrix
% PRIOR.INDEX in which the columns correspond to the elements of
% PRMEAN. Each column has one element for each weight in the matrix, in
% the order defined by the function GPPAK, and each element is 1 or 0
% according to whether the parameter is a member of the corresponding
% group or not. The additional field NET.INDEX is set in this case.
%
% See also
% GPPAK, GPUNPAK, GPFWD, GPERR, GPCOVAR, GPGRAD
%
% Copyright (c) Ian T Nabney (1996-2001)
net.type = 'gp';
net.nin = nin;
net.nout = 1; % Only do single output GP
% Store log parameters
net.bias = 0;
net.min_noise = sqrt(eps); % Prevent output noise collapsing completely
net.noise = 0;
net.inweights = zeros(1,nin); % Weights on inputs in covariance function
covarfns = {'sqexp', 'ratquad'};
if sum(strcmp(covar_fn, covarfns)) == 0
error('Undefined activation function. Exiting.');
else
net.covar_fn = covar_fn;
end
switch covar_fn
case 'sqexp' % Squared exponential
net.fpar = zeros(1,1); % One function specific parameter
case 'ratquad' % Rational quadratic
net.fpar = zeros(1, 2); % Two function specific parameters
otherwise
error(['Unknown covariance function ', covar_fn]);
end
net.nwts = 2 + nin + length(net.fpar);
if nargin >= 3
if size(prior.pr_mean) == [1 1]
net.pr_mean = prior.pr_mean;
net.pr_var = prior.pr_var;
else
net.pr_mean = prior.pr_mean;
net.pr_var = prior.pr_var;
net.index = prior.index;
end
end
% Store training data as needed for gpfwd
net.tr_in = [];
net.tr_targets = [];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -