📄 netinit.m
字号:
function net = netinit(net, prior)
%NETINIT Initialise the weights in a network.
%
% Description
%
% NET = NETINIT(NET, PRIOR) takes a network data structure NET and sets
% the weights and biases by sampling from a Gaussian distribution. If
% PRIOR is a scalar, then all of the parameters (weights and biases)
% are sampled from a single isotropic Gaussian with inverse variance
% equal to PRIOR. If PRIOR is a data structure of the kind generated by
% MLPPRIOR, then the parameters are sampled from multiple Gaussians
% according to their groupings (defined by the INDEX field) with
% corresponding variances (defined by the ALPHA field).
%
% See also
% MLPPRIOR, NETUNPAK, RBFPRIOR
%
% Copyright (c) Ian T Nabney (1996-2001)
if isstruct(prior)
if (isfield(net, 'mask'))
if find(sum(prior.index, 2)) ~= find(net.mask)
error('Index does not match mask');
end
sig = sqrt(prior.index*prior.alpha);
% Weights corresponding to zeros in mask will not be used anyway
% Set their priors to one to avoid division by zero
sig = sig + (sig == 0);
sig = 1./sqrt(sig);
else
sig = 1./sqrt(prior.index*prior.alpha);
end
w = sig'.*randn(1, net.nwts);
elseif size(prior) == [1 1]
w = randn(1, net.nwts).*sqrt(1/prior);
else
error('prior must be a scalar or a structure');
end
if (isfield(net, 'mask'))
w = w(logical(net.mask));
end
net = netunpak(net, w);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -