⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gssm_mackey_glass.m

📁 有关kalman滤波及其一些变形滤波算法
💻 M
字号:
% GSSM_MACKEY_GLASS  Generalized state space model for Mackey-Glass chaotic time series%%  The Mackey-Glass time-delay differential equation is defined by%%            dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)%%  When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that%  is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)%%  We assume that the chaotic time series is generated with by a nonlinear autoregressive%  model where the nonlinear functional unit is a feedforward neural network. We use a%  tap length of 6 and a 6-4-1 MLP neural network with hyperbolic tangent activation functions%  in the hidden layer and a linear output activation.%%   Copyright (c) Oregon Health & Science University (2006)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained from%   http://choosh.csee.ogi.edu/rebel/.  Businesses wishing to obtain a copy of the%   software should contact rebel@csee.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%===============================================================================================function [varargout] = model_interface(func, varargin)  switch func    %--- Initialize GSSM data structure --------------------------------------------------------    case 'init'      model = init(varargin);        error(consistent(model,'gssm'));               % check consistentency of initialized model      varargout{1} = model;    %--------------------------------------------------------------------------------------------    otherwise      error(['Function ''' func ''' not supported.']);  end%===============================================================================================function model = init(init_args)  load mg30_6-4-1_model.mat;            % load ReBEL neural network model from Matlab MAT file                                        % This loads a NeuralNetDS data structure, i.e.                                        % NeuralNet.type = 'NeuralNetDS'                                        % NeuralNet.subtype = 'MLP'                                        % NeuralNet.nodes   : MLP structure descriptor vector                                        % NeuralNet.olType  : output layer type                                        % NeuralNet.weights : neural network parameters                                        % NeuralNet.pnVar   : inovation variance  model.type = 'gssm';                  % object type = generalized state space model  model.tag  = 'GSSM_Mackey-Glas-30';   % ID tag  model.ffun      = @ffun;              % functionhandle to FFUN  model.hfun      = @hfun;              % functionhandle to HFUN  model.linearize = @linearize;         % functionhandle to LINEARIZE  model.setparams = @setparams;         % functionhandle to SETPARAMS  model.likelihood = @likelihood;       % functionhandle to LIKELIHOOD  model.prior = @prior;                 % functionhandle to PRIOR function  model.statedim   = 6;                 % state dimension  model.obsdim     = 1;                 % observation dimension  model.paramdim   = length(NeuralNet.weights);   % parameter dimension   [should equal 6*4+4 + 4*1 + 1 ]  model.U1dim      = 0;                 % exogenous control input 1 dimension  model.U2dim      = 0;                 % exogenous control input 2 dimension  model.Vdim       = 1;                 % process noise dimension  model.Ndim       = 1;                 % observation noise dimension  Arg.type = 'gaussian';                % process noise source  Arg.cov_type = 'full';  Arg.dim = model.Vdim;  Arg.mu = 0;  Arg.cov  = NeuralNet.pnVar;                      % process noise variance  model.pNoise = gennoiseds(Arg);       % process noise : zero mean white Gaussian noise  Arg.type = 'gaussian';  Arg.cov_type = 'full';  Arg.dim = model.Ndim;  Arg.mu = 0;  Arg.cov  = 1;                           % This will be set in the main program, depending on the experiment  model.oNoise = gennoiseds(Arg);  model.params = zeros(model.paramdim,1);  % setup model parameter vector buffer (this is required by ReBEL)  % Problem/model specific parameters are saved here to speed up subsequent access to these values. One can also  % just save the whole neural network data structure, i.e. model.NeuralNetwork = NeuralNetwork, but this adds another  % layer of dereferencing, which will slow down the code. This is up to the user to decide.  model.nodes = NeuralNet.nodes;  model.olType = NeuralNet.olType;  model.trueWeights = NeuralNet.weights;  % pre-allocate parameter buffers  [model.W1, model.B1, model.W2, model.B2] = mlpunpack(model.nodes, model.trueWeights);  % Generate NN parameter devectorizing indexes to allow for self-contained 'setparams' function. This  % speeds up the code for parameter and joint estimation  [model.idxW1, model.idxB1, model.idxW2, model.idxB2] = mlpindexgen(model.nodes);  % Call setparam function (required)  model = setparams(model, model.trueWeights, 1:model.paramdim);    % set/store the model parameters%===============================================================================================function model = setparams(model, params, paramIdxVec)  switch nargin   case 2     model.params = params;   case 3     model.params(paramIdxVec) = params;  end  % Unpack ReBEL MLP Neural Net parameters 'inline'. This can also be accomplished with a call  % to 'mlpunpack', but this way speeds up the code.  tparams = model.params;  model.W1(:) = tparams(model.idxW1);  model.B1    = tparams(model.idxB1);  model.W2(:) = tparams(model.idxW2);  model.B2    = tparams(model.idxB2);%===============================================================================================function new_state = ffun(model, state, V, U1)  nov = size(state,2);  new_state = zeros(model.statedim,nov);  % direct implementation of ReBEL MLP neural network call ... 'nnet2' can also be called, but this is faster  new_state(1,:) = model.W2 * tanh(model.W1*state + cvecrep(model.B1,nov)) + cvecrep(model.B2,nov);  new_state(2:end,:) = state(1:end-1,:);  if ~isempty(V)    new_state(1,:) = new_state(1,:) + V(1,:);  end%===============================================================================================function observ = hfun(model, state, N, U2)  observ = state(1,:);  if ~isempty(N)    observ = state(1,:) + N(1,:);  end%===============================================================================================function tranprior = prior(model, nextstate, state, U1, pNoiseDS)  X = nextstate - ffun(model, state, [], U1);  tranprior = pNoiseDS.likelihood( pNoiseDS, X(1,:));%===============================================================================================function llh = likelihood(model, obs, state, U2, oNoiseDS)  X = obs - hfun(model, state, [], U2);  llh = oNoiseDS.likelihood( oNoiseDS, X);%===============================================================================================function out = linearize(model, state, V, N, U1, U2, term, index_vector)  if (nargin<7)    error('[ linearize ] Not enough input arguments!');  end  %--------------------------------------------------------------------------------------  switch (term)    case 'A'      %%%========================================================      %%%             Calculate A = df/dstate      %%%========================================================      A=zeros(model.statedim);                                          % quick init to zeros      A(2:model.statedim,1:model.statedim-1) = eye(model.statedim-1);      A(1,1:model.statedim) = mlpjacobian('dydx', model.olType, model.nodes, state, model.W1, model.B1, model.W2, model.B2);      out = A;    case 'B'      %%%========================================================      %%%             Calculate B = df/dU1      %%%========================================================      out = [];    case 'C'      %%%========================================================      %%%             Calculate C = dh/dx      %%%========================================================      C = zeros(model.obsdim, model.statedim);      C(1,1) = 1;      out = C;   case 'D'      %%%========================================================      %%%             Calculate D = dh/dU2      %%%========================================================      out = [];    case 'G'      %%%========================================================      %%%             Calculate G = df/dv      %%%========================================================      G = zeros(model.statedim,1);      G(1,1) = 1;      out = G;    case 'H'      %%%========================================================      %%%             Calculate H = dh/dn      %%%========================================================      H = zeros(model.obsdim,1);      H(1,1) = 1;      out = H;    case 'JFW'      %%%========================================================      %%%             Calculate  = dffun/dparameters      %%%========================================================      JFW = zeros(model.statedim, model.paramdim);      JFW(1,:) = mlpjacobian('dydw', model.olType, model.nodes, state, model.W1, model.B1, model.W2, model.B2);      out = JFW;    case 'JHW'      %%%========================================================      %%%             Calculate  = dhfun/dparameters      %%%========================================================      out = zeros(model.obsdim,model.paramdim);    otherwise      error('[ linearize ] Invalid model term requested!');  end  if (nargin==8), out = out(:,index_vector); end  %--------------------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -