📄 kdgauss.m
字号:
%KDGAUSS Derivative of Gaussian kernel%% k = kdgauss(sigma)% k = kdgauss(sigma, w)%% Returns a kernel a x-derivative of Gaussian, this is a convolution% of a Gaussian smoothing kernel with a [-1 1] kernel.% The Gaussian has a standard deviation of sigma, and the convolution% kernel has a half size of w, that is, k is (2W+1) x (2W+1).%% If w is not specified it defaults to 2*sigma.%% SEE ALSO: kgauss kdog conv2%% Copyright (c) Peter Corke, 2004 Machine Vision Toolbox for Matlab% pic 11/04% $Header: /home/autom/pic/cvsroot/image-toolbox/kdgauss.m,v 1.1 2005/10/23 12:06:52 pic Exp $% $Log: kdgauss.m,v $% Revision 1.1 2005/10/23 12:06:52 pic% Common kernels.%%function m = kdgauss(sigma, w) if nargin == 1, w = ceil(2*sigma); end ww = 2*w + 1; [x,y] = meshgrid(-w:w, -w:w); m = -x/sigma^2 /(2*pi) .* exp( -(x.^2 + y.^2)/2/sigma^2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -