📄 gradient_descent.m
字号:
function Min = gradient_descent(a, theta, eta, fun)
% Minimize a function using the basic gradient descent algorithm
%
% Inputs:
% a - Initial search point
% theta - Convergence criterion
% eta - Descent rate
% fun - The function to minimize
%
% Outputs:
% Min - The minimum point
gradJ = 1e3;
step_size = 1e-2;
D = length(a);
while (gradJ > theta),
%Compute the gradient of J in each direction
gradJi = zeros(1,D);
for i = 1:D,
delta = zeros(size(a));
delta(i) = step_size;
y_minus = feval(fun, a - delta);
y_plus = feval(fun, a + delta);
gradJi(i) = (y_plus - y_minus)/(2*step_size);
end
%a <- a - eta*gradJ
a = a - eta*gradJi;
gradJ = sum(abs(gradJi))*eta;
end
Min = a;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -