📄 contents.m
字号:
% HMM's
% HMM_Backward - HMM backward algorithm
% HMM_Boltzmann - Find the transition matrices of an HMM using Boltzmann networks
% HMM_Decoding - Find probable states from the output of an HMM
% HMM_Evaluation - Find the probability of a finite state in a Markov chain
% HMM_Forward - HMM forward algorithm
% HMM_Forward_backward- Forward-backward estimation algorithm
% HMM_Generate - Generate a sample output of an HMM
%
% Optimization
% Gradient_descent - Find the minimum of a function using gradient descent
% Newton_descent - Find the minimum of a function using Newton descent
% demo_fun - A demo fun to minimize
% Stochastic_regression - Perform stochastic regression for linear data
%
% Estimations:
% mean_jackknife - Estimate the mean using the Jackknife estimate
% mean_bootstrap - Estimate the mean using the bootstrap estimate
% ROCC - Generate the reciever operating characteristic curve
% Sufficient_statistics - Find the sufficient statistics for common distributions
%
% Data reshaping
% MultipleDiscriminantAnalysis - Multiple descriminant analysis
% Bayesian_parameter_est - Estimate the mean using the Bayesian parameter estimation for Gaussian mixture
%
% String algorithms
% Bottom_Up_Parsing
% Boyer_Moore_String_Matching
% Edit_Distance
% Grammatical_Inference
% Naive_String_Matching
%
% Bayesian belief networks
% Bayesian_Belief_Networks
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -