📄 pca.m
字号:
function [features, targets, UW, m] = PCA(features, targets, dimension, region)
%Reshape the data points using the principal component analysis
%Inputs:
% train_features - Input features
% train_targets - Input targets
% dimension - Number of dimensions for the output data points
% region - Decision region vector: [-x x -y y number_of_points]
%
%Outputs
% features - New features
% targets - New targets
% UW - Reshape martix
% m - Original feature averages
[r,c] = size(features);
if (r < dimension),
disp('Required dimension is larger than the data dimension.')
disp(['Will use dimension ' num2str(r)])
dimension = r;
end
%Calculate cov matrix and the PCA matrixes
m = mean(features')';
S = ((features - m*ones(1,c)) * (features - m*ones(1,c))');
[V, D] = eig(S);
W = V(:,r-dimension+1:r)';
U = S*W'*inv(W*S*W');
%Calculate new features
UW = U*W;
features = W*features;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -