📄 lvq1.m
字号:
function [features, targets] = LVQ1(train_features, train_targets, Nmu, region, plot_on)
%Reduce the number of data points using linear vector quantization
%Inputs:
% train_features - Input features
% train_targets - Input targets
% Nmu - Number of output data points
% region - Decision region vector: [-x x -y y number_of_points]
% plot_on - Plot stages of the algorithm
%
%Outputs
% features - New features
% targets - New targets
%OR
% D - Decision region
if (nargin < 5),
plot_on = 0;
end
alpha = 0.9;
L = length(train_targets);
dist = zeros(Nmu,L);
label = zeros(1,L);
%Initialize the mu's
mu = randn(2,Nmu);
mu = sqrtm(cov(train_features',1))*mu + mean(train_features')'*ones(1,Nmu);
mu_target= rand(1,Nmu)>0.5;
old_mu = zeros(2,Nmu);
while (sum(sum(abs(mu - old_mu))) > 0.1),
old_mu = mu;
%Classify all the features to one of the mu's
for i = 1:Nmu,
dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
end
%Label the points
[m,label] = min(dist);
%Label the mu's
for i = 1:Nmu,
if (length(train_targets(:,find(label == i))) > 0),
mu_target(i) = (sum(train_targets(:,find(label == i)))/length(train_targets(:,find(label == i))) > .5);
end
end
%Recompute the mu's
for i = 1:Nmu,
indices = find(label == i);
if ~isempty(indices),
Q = ones(2,1) * (2*(train_targets(indices) == mu_target(i)) - 1);
mu(:,i) = mu(:,i) + mean(((train_features(:,indices)-mu(:,i)*ones(1,length(indices))).*Q)')'*alpha;
end
end
alpha = 0.95 * alpha;
if (plot_on == 1),
plot_process(mu)
end
end
%Make the decision region
targets = zeros(1,Nmu);
if (Nmu > 1),
for i = 1:Nmu,
if (length(train_targets(:,find(label == i))) > 0),
targets(i) = (sum(train_targets(:,find(label == i)))/length(train_targets(:,find(label == i))) > .5);
end
end
else
%There is only one center
targets = (sum(train_targets)/length(train_targets) > .5);
end
features = mu;
if (nargout == 1),
features = Nearest_Neighbor(features, targets, 1, region);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -