📄 perceptron.m
字号:
function D = Perceptron(train_features, train_targets, alg_param, region)
% Classify using the Perceptron algorithm (Fixed increment single-sample perceptron)
% Inputs:
% features - Train features
% targets - Train targets
% alg_param - Either: Number of iterations, weights vector or [weights, number of iterations]
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
[c, r] = size(train_features);
%Weighted Perceptron or not?
switch length(alg_param),
case r + 1,
%Ada boost form
p = alg_param(1:end-1);
max_iter = alg_param(end);
case {r,0},
%No parameter given
p = ones(1,r);
max_iter = 5000;
otherwise
%Number of iterations given
max_iter = alg_param;
p = ones(1,r);
end
train_features = [train_features ; ones(1,r)];
train_zero = find(train_targets == 0);
%Preprocessing
y = train_features;
y(:,train_zero)= -y(:,train_zero);
%Initial weights
a = sum(y')';
n = length(train_targets);
iter = 0;
while ((sum(sign(a'*train_features.*(2*train_targets-1))<0)>0) & (iter < max_iter))
iter = iter + 1;
indice = 1 + floor(rand(1)*n);
if (a' * y(:,indice) <= 0)
a = a + p(indice)* y(:,indice);
end
end
if (iter == max_iter)&(length(alg_param)~= r + 1),
disp(['Maximum iteration (' num2str(max_iter) ') reached']);
end
%Find decision region
N = region(5);
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
D = (a(1).*x + a(2).*y + a(c+1)> 0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -