📄 addc.m
字号:
function [features, targets] = ADDC(train_features, train_targets, Nmu, region, plot_on)
%Reduce the number of data points using the Agglomerative clustering algorithm
%Inputs:
% train_features - Input features
% train_targets - Input targets
% Nmu - Maximum number of output data points
% region - Decision region vector (unused)
% plot_on - Plot stages of the algorithm
%
%Outputs
% features - New features
% targets - New targets
if (nargin < 5),
plot_on = 0;
end
if (Nmu == 1),
%If one center is needed, it is simply the average of the data
features = mean(train_features')';
targets = (sum(train_targets)/length(train_targets) > 0.5);
break
end
[D,L] = size(train_features);
min_percentage = 0.001; %Points with count less than this will be removed
min_number = 5; %Points with count less than this will also be removed
%Initialize the mu's
K = 0; %Number of centroids
mu = zeros(D,Nmu);
count = zeros(1,Nmu);
for i = 1:L,
data = train_features(:,i);
if (K > 0),
%Find closest centriod
dist = sum((mu(:,1:K) - data * ones(1,K)).^2);
[temp, min_d] = min(dist);
mu(:,min_d) = mu(:,min_d) + (data - mu(:,min_d)) / (count(:,min_d) + 1);
count(:,min_d) = count(:,min_d) + 1;
end
if (K < Nmu),
%Add new centroid
K = K + 1;
mu(:,K) = data;
else
%Merge redundant centroids
closest_i1 = 0;
closest_i2 = 0;
dist = 1e100;
for i1 = 1:K,
for i2 = 1:K,
if (i1 ~= i2),
temp_dist = norm(mu(:,i1)-mu(:,i2));
if (temp_dist < dist),
dist = temp_dist;
closest_i1 = i1;
closest_i2 = i2;
end
end
end
end
if ((count(closest_i1) + count(closest_i2)) > 0),
mu(:,closest_i1) = (mu(:,closest_i1)*count(closest_i1) + mu(:,closest_i2)*count(closest_i2)) / ...
(count(closest_i1) + count(closest_i2));
count(closest_i1) = count(closest_i1) + count(closest_i2);
mu(:,closest_i2) = data;
count(closest_i2) = 0;
end
end
if (plot_on == 1),
plot_process(mu)
end
end
%Post-processing
keep = find(count(1:K) > max(min_percentage*L,min_number));
features = mu(:,keep);
Nmu = length(keep);
%Classify all the features to one of the mu's (1-NN)
dist = zeros(Nmu,L);
for i = 1:Nmu,
dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
end
%Label the points
if (Nmu > 1),
[m,label] = min(dist);
targets = zeros(1,Nmu);
for i = 1:Nmu,
if (length(train_targets(:,find(label == i))) > 0),
targets(i) = (sum(train_targets(:,find(label == i)))/length(train_targets(:,find(label == i))) > .5);
end
end
else
%There is only one center
targets = (sum(train_targets)/length(train_targets) > .5);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -