⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r_dh.c

📁 RSA加密实现
💻 C
字号:
/* R_DH.C - Diffie-Hellman routines for RSAREF *//* Copyright (C) RSA Laboratories, a division of RSA Data Security,     Inc., created 1993. All rights reserved. */#include "global.h"#include "rsaref.h"#include "r_random.h"#include "nn.h"#include "prime.h"/* Generates Diffie-Hellman parameters. */int R_GenerateDHParams (params, primeBits, subPrimeBits, randomStruct)R_DH_PARAMS *params;                       /* new Diffie-Hellman parameters */unsigned int primeBits;                          /* length of prime in bits */unsigned int subPrimeBits;                    /* length of subprime in bits */R_RANDOM_STRUCT *randomStruct;                          /* random structure */{  int status;  NN_DIGIT g[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS],    t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS];  unsigned int pDigits;  pDigits = (primeBits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;    /* Generate subprime q between 2^(subPrimeBits-1) and       2^subPrimeBits-1, searching in steps of 2.   */  NN_Assign2Exp (t, subPrimeBits-1, pDigits);  NN_Assign (u, t, pDigits);  NN_ASSIGN_DIGIT (v, 1, pDigits);  NN_Sub (v, t, v, pDigits);  NN_Add (u, u, v, pDigits);  NN_ASSIGN_DIGIT (v, 2, pDigits);  if (status = GeneratePrime (q, t, u, v, pDigits, randomStruct))    return (status);    /* Generate prime p between 2^(primeBits-1) and 2^primeBits-1,       searching in steps of 2*q.   */  NN_Assign2Exp (t, primeBits-1, pDigits);  NN_Assign (u, t, pDigits);  NN_ASSIGN_DIGIT (v, 1, pDigits);  NN_Sub (v, t, v, pDigits);  NN_Add (u, u, v, pDigits);  NN_LShift (v, q, 1, pDigits);  if (status = GeneratePrime (p, t, u, v, pDigits, randomStruct))    return (status);    /* Generate generator g for subgroup as 2^((p-1)/q) mod p.   */  NN_ASSIGN_DIGIT (g, 2, pDigits);  NN_Div (t, u, p, pDigits, q, pDigits);  NN_ModExp (g, g, t, pDigits, p, pDigits);  params->generatorLen = params->primeLen = DH_PRIME_LEN (primeBits);  NN_Encode (params->prime, params->primeLen, p, pDigits);  NN_Encode (params->generator, params->generatorLen, g, pDigits);  return (0);}/* Sets up Diffie-Hellman key agreement. Public value has same length   as prime. */int R_SetupDHAgreement  (publicValue, privateValue, privateValueLen, params, randomStruct)unsigned char *publicValue;                             /* new public value */unsigned char *privateValue;                           /* new private value */unsigned int privateValueLen;                    /* length of private value */R_DH_PARAMS *params;                           /* Diffie-Hellman parameters */R_RANDOM_STRUCT *randomStruct;                          /* random structure */{  int status;  NN_DIGIT g[MAX_NN_DIGITS], p[MAX_NN_DIGITS], x[MAX_NN_DIGITS],    y[MAX_NN_DIGITS];  unsigned int pDigits, xDigits;  NN_Decode (p, MAX_NN_DIGITS, params->prime, params->primeLen);  pDigits = NN_Digits (p, MAX_NN_DIGITS);  NN_Decode (g, pDigits, params->generator, params->generatorLen);  /* Generate private value.   */  if (status = R_GenerateBytes (privateValue, privateValueLen, randomStruct))    return (status);  NN_Decode (x, pDigits, privateValue, privateValueLen);  xDigits = NN_Digits (x, pDigits);    /* Compute y = g^x mod p.   */  NN_ModExp (y, g, x, xDigits, p, pDigits);  NN_Encode (publicValue, params->primeLen, y, pDigits);    /* Zeroize sensitive information.   */  R_memset ((POINTER)x, 0, sizeof (x));  return (0);}/* Computes agreed key from the other party's public value, a private   value, and Diffie-Hellman parameters. Other public value and   agreed-upon key have same length as prime.   Requires otherPublicValue < prime. */int R_ComputeDHAgreedKey  (agreedKey, otherPublicValue, privateValue, privateValueLen, params)unsigned char *agreedKey;                                 /* new agreed key */unsigned char *otherPublicValue;                    /* other's public value */unsigned char *privateValue;                               /* private value */unsigned int privateValueLen;                    /* length of private value */R_DH_PARAMS *params;                           /* Diffie-Hellman parameters */{  NN_DIGIT p[MAX_NN_DIGITS], x[MAX_NN_DIGITS], y[MAX_NN_DIGITS],    z[MAX_NN_DIGITS];  unsigned int pDigits, xDigits;  NN_Decode (p, MAX_NN_DIGITS, params->prime, params->primeLen);  pDigits = NN_Digits (p, MAX_NN_DIGITS);  NN_Decode (x, pDigits, privateValue, privateValueLen);  xDigits = NN_Digits (x, pDigits);  NN_Decode (y, pDigits, otherPublicValue, params->primeLen);  if (NN_Cmp (y, p, pDigits) >= 0)    return (RE_DATA);    /* Compute z = y^x mod p.   */  NN_ModExp (z, y, x, xDigits, p, pDigits);  NN_Encode (agreedKey, params->primeLen, z, pDigits);    /* Zeroize sensitive information.   */  R_memset ((POINTER)x, 0, sizeof (x));  R_memset ((POINTER)z, 0, sizeof (z));  return (0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -