⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsa.c

📁 RSA加密实现
💻 C
字号:
/* RSA.C - RSA routines for RSAREF *//* Copyright (C) RSA Laboratories, a division of RSA Data Security,     Inc., created 1991. All rights reserved. */#include "global.h"#include "rsaref.h"#include "r_random.h"#include "rsa.h"#include "nn.h"static int RSAPublicBlock PROTO_LIST   ((unsigned char *, unsigned int *, unsigned char *, unsigned int,    R_RSA_PUBLIC_KEY *));static int RSAPrivateBlock PROTO_LIST   ((unsigned char *, unsigned int *, unsigned char *, unsigned int,    R_RSA_PRIVATE_KEY *));/* RSA public-key encryption, according to PKCS #1. */int RSAPublicEncrypt  (output, outputLen, input, inputLen, publicKey, randomStruct)unsigned char *output;                                      /* output block */unsigned int *outputLen;                          /* length of output block */unsigned char *input;                                        /* input block */unsigned int inputLen;                             /* length of input block */R_RSA_PUBLIC_KEY *publicKey;                              /* RSA public key */R_RANDOM_STRUCT *randomStruct;                          /* random structure */{  int status;  unsigned char byte, pkcsBlock[MAX_RSA_MODULUS_LEN];  unsigned int i, modulusLen;    modulusLen = (publicKey->bits + 7) / 8;  if (inputLen + 11 > modulusLen)    return (RE_LEN);    pkcsBlock[0] = 0;  /* block type 2 */  pkcsBlock[1] = 2;  for (i = 2; i < modulusLen - inputLen - 1; i++) {    /* Find nonzero random byte.     */    do {      R_GenerateBytes (&byte, 1, randomStruct);    } while (byte == 0);    pkcsBlock[i] = byte;  }  /* separator */  pkcsBlock[i++] = 0;    R_memcpy ((POINTER)&pkcsBlock[i], (POINTER)input, inputLen);    status = RSAPublicBlock    (output, outputLen, pkcsBlock, modulusLen, publicKey);    /* Zeroize sensitive information.   */  byte = 0;  R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock));    return (status);}/* RSA public-key decryption, according to PKCS #1. */int RSAPublicDecrypt (output, outputLen, input, inputLen, publicKey)unsigned char *output;                                      /* output block */unsigned int *outputLen;                          /* length of output block */unsigned char *input;                                        /* input block */unsigned int inputLen;                             /* length of input block */R_RSA_PUBLIC_KEY *publicKey;                              /* RSA public key */{  int status;  unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];  unsigned int i, modulusLen, pkcsBlockLen;    modulusLen = (publicKey->bits + 7) / 8;  if (inputLen > modulusLen)    return (RE_LEN);    if (status = RSAPublicBlock      (pkcsBlock, &pkcsBlockLen, input, inputLen, publicKey))    return (status);    if (pkcsBlockLen != modulusLen)    return (RE_LEN);    /* Require block type 1.   */  if ((pkcsBlock[0] != 0) || (pkcsBlock[1] != 1))   return (RE_DATA);  for (i = 2; i < modulusLen-1; i++)    if (pkcsBlock[i] != 0xff)      break;      /* separator */  if (pkcsBlock[i++] != 0)    return (RE_DATA);    *outputLen = modulusLen - i;    if (*outputLen + 11 > modulusLen)    return (RE_DATA);  R_memcpy ((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen);    /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock));    return (0);}/* RSA private-key encryption, according to PKCS #1. */int RSAPrivateEncrypt (output, outputLen, input, inputLen, privateKey)unsigned char *output;                                      /* output block */unsigned int *outputLen;                          /* length of output block */unsigned char *input;                                        /* input block */unsigned int inputLen;                             /* length of input block */R_RSA_PRIVATE_KEY *privateKey;                           /* RSA private key */{  int status;  unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];  unsigned int i, modulusLen;    modulusLen = (privateKey->bits + 7) / 8;  if (inputLen + 11 > modulusLen)    return (RE_LEN);    pkcsBlock[0] = 0;  /* block type 1 */  pkcsBlock[1] = 1;  for (i = 2; i < modulusLen - inputLen - 1; i++)    pkcsBlock[i] = 0xff;  /* separator */  pkcsBlock[i++] = 0;    R_memcpy ((POINTER)&pkcsBlock[i], (POINTER)input, inputLen);    status = RSAPrivateBlock    (output, outputLen, pkcsBlock, modulusLen, privateKey);  /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock));  return (status);}/* RSA private-key decryption, according to PKCS #1. */int RSAPrivateDecrypt (output, outputLen, input, inputLen, privateKey)unsigned char *output;                                      /* output block */unsigned int *outputLen;                          /* length of output block */unsigned char *input;                                        /* input block */unsigned int inputLen;                             /* length of input block */R_RSA_PRIVATE_KEY *privateKey;                           /* RSA private key */{  int status;  unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];  unsigned int i, modulusLen, pkcsBlockLen;    modulusLen = (privateKey->bits + 7) / 8;  if (inputLen > modulusLen)    return (RE_LEN);    if (status = RSAPrivateBlock      (pkcsBlock, &pkcsBlockLen, input, inputLen, privateKey))    return (status);    if (pkcsBlockLen != modulusLen)    return (RE_LEN);    /* Require block type 2.   */  if ((pkcsBlock[0] != 0) || (pkcsBlock[1] != 2))   return (RE_DATA);  for (i = 2; i < modulusLen-1; i++)    /* separator */    if (pkcsBlock[i] == 0)      break;      i++;  if (i >= modulusLen)    return (RE_DATA);      *outputLen = modulusLen - i;    if (*outputLen + 11 > modulusLen)    return (RE_DATA);  R_memcpy ((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen);    /* Zeroize sensitive information.   */  R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock));    return (0);}/* Raw RSA public-key operation. Output has same length as modulus.   Assumes inputLen < length of modulus.   Requires input < modulus. */static int RSAPublicBlock (output, outputLen, input, inputLen, publicKey)unsigned char *output;                                      /* output block */unsigned int *outputLen;                          /* length of output block */unsigned char *input;                                        /* input block */unsigned int inputLen;                             /* length of input block */R_RSA_PUBLIC_KEY *publicKey;                              /* RSA public key */{  NN_DIGIT c[MAX_NN_DIGITS], e[MAX_NN_DIGITS], m[MAX_NN_DIGITS],    n[MAX_NN_DIGITS];  unsigned int eDigits, nDigits;  NN_Decode (m, MAX_NN_DIGITS, input, inputLen);  NN_Decode (n, MAX_NN_DIGITS, publicKey->modulus, MAX_RSA_MODULUS_LEN);  NN_Decode (e, MAX_NN_DIGITS, publicKey->exponent, MAX_RSA_MODULUS_LEN);  nDigits = NN_Digits (n, MAX_NN_DIGITS);  eDigits = NN_Digits (e, MAX_NN_DIGITS);    if (NN_Cmp (m, n, nDigits) >= 0)    return (RE_DATA);    /* Compute c = m^e mod n.   */  NN_ModExp (c, m, e, eDigits, n, nDigits);  *outputLen = (publicKey->bits + 7) / 8;  NN_Encode (output, *outputLen, c, nDigits);    /* Zeroize sensitive information.   */  R_memset ((POINTER)c, 0, sizeof (c));  R_memset ((POINTER)m, 0, sizeof (m));  return (0);}/* Raw RSA private-key operation. Output has same length as modulus.   Assumes inputLen < length of modulus.   Requires input < modulus. */static int RSAPrivateBlock (output, outputLen, input, inputLen, privateKey)unsigned char *output;                                      /* output block */unsigned int *outputLen;                          /* length of output block */unsigned char *input;                                        /* input block */unsigned int inputLen;                             /* length of input block */R_RSA_PRIVATE_KEY *privateKey;                           /* RSA private key */{  NN_DIGIT c[MAX_NN_DIGITS], cP[MAX_NN_DIGITS], cQ[MAX_NN_DIGITS],    dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], mP[MAX_NN_DIGITS],    mQ[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS],    qInv[MAX_NN_DIGITS], t[MAX_NN_DIGITS];  unsigned int cDigits, nDigits, pDigits;    NN_Decode (c, MAX_NN_DIGITS, input, inputLen);  NN_Decode (n, MAX_NN_DIGITS, privateKey->modulus, MAX_RSA_MODULUS_LEN);  NN_Decode (p, MAX_NN_DIGITS, privateKey->prime[0], MAX_RSA_PRIME_LEN);  NN_Decode (q, MAX_NN_DIGITS, privateKey->prime[1], MAX_RSA_PRIME_LEN);  NN_Decode     (dP, MAX_NN_DIGITS, privateKey->primeExponent[0], MAX_RSA_PRIME_LEN);  NN_Decode     (dQ, MAX_NN_DIGITS, privateKey->primeExponent[1], MAX_RSA_PRIME_LEN);  NN_Decode (qInv, MAX_NN_DIGITS, privateKey->coefficient, MAX_RSA_PRIME_LEN);  cDigits = NN_Digits (c, MAX_NN_DIGITS);  nDigits = NN_Digits (n, MAX_NN_DIGITS);  pDigits = NN_Digits (p, MAX_NN_DIGITS);  if (NN_Cmp (c, n, nDigits) >= 0)    return (RE_DATA);    /* Compute mP = cP^dP mod p  and  mQ = cQ^dQ mod q. (Assumes q has     length at most pDigits, i.e., p > q.)   */  NN_Mod (cP, c, cDigits, p, pDigits);  NN_Mod (cQ, c, cDigits, q, pDigits);  NN_ModExp (mP, cP, dP, pDigits, p, pDigits);  NN_AssignZero (mQ, nDigits);  NN_ModExp (mQ, cQ, dQ, pDigits, q, pDigits);    /* Chinese Remainder Theorem:       m = ((((mP - mQ) mod p) * qInv) mod p) * q + mQ.   */  if (NN_Cmp (mP, mQ, pDigits) >= 0)    NN_Sub (t, mP, mQ, pDigits);  else {    NN_Sub (t, mQ, mP, pDigits);    NN_Sub (t, p, t, pDigits);  }  NN_ModMult (t, t, qInv, p, pDigits);  NN_Mult (t, t, q, pDigits);  NN_Add (t, t, mQ, nDigits);  *outputLen = (privateKey->bits + 7) / 8;  NN_Encode (output, *outputLen, t, nDigits);  /* Zeroize sensitive information.   */  R_memset ((POINTER)c, 0, sizeof (c));  R_memset ((POINTER)cP, 0, sizeof (cP));  R_memset ((POINTER)cQ, 0, sizeof (cQ));  R_memset ((POINTER)dP, 0, sizeof (dP));  R_memset ((POINTER)dQ, 0, sizeof (dQ));  R_memset ((POINTER)mP, 0, sizeof (mP));  R_memset ((POINTER)mQ, 0, sizeof (mQ));  R_memset ((POINTER)p, 0, sizeof (p));  R_memset ((POINTER)q, 0, sizeof (q));  R_memset ((POINTER)qInv, 0, sizeof (qInv));  R_memset ((POINTER)t, 0, sizeof (t));  return (0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -