⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 drydemo.html

📁 交流 模糊控制 交流 模糊控制
💻 HTML
📖 第 1 页 / 共 3 页
字号:
winH1 = gcf;</pre><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:gray; font-style:italic;">Selecting input 1 ...ANFIS model 1: y(k-1) --&gt; trn=0.2043, chk=0.1888ANFIS model 2: y(k-2) --&gt; trn=0.3819, chk=0.3541ANFIS model 3: y(k-3) --&gt; trn=0.5245, chk=0.4903ANFIS model 4: y(k-4) --&gt; trn=0.6308, chk=0.5977ANFIS model 5: u(k-1) --&gt; trn=0.8271, chk=0.8434ANFIS model 6: u(k-2) --&gt; trn=0.7976, chk=0.8087ANFIS model 7: u(k-3) --&gt; trn=0.7266, chk=0.7349ANFIS model 8: u(k-4) --&gt; trn=0.6215, chk=0.6346ANFIS model 9: u(k-5) --&gt; trn=0.5419, chk=0.5650ANFIS model 10: u(k-6) --&gt; trn=0.5304, chk=0.5601Currently selected inputs: y(k-1)Selecting input 2 ...ANFIS model 11: y(k-1) y(k-2) --&gt; trn=0.1085, chk=0.1024ANFIS model 12: y(k-1) y(k-3) --&gt; trn=0.1339, chk=0.1283ANFIS model 13: y(k-1) y(k-4) --&gt; trn=0.1542, chk=0.1461ANFIS model 14: y(k-1) u(k-1) --&gt; trn=0.1892, chk=0.1734ANFIS model 15: y(k-1) u(k-2) --&gt; trn=0.1663, chk=0.1574ANFIS model 16: y(k-1) u(k-3) --&gt; trn=0.1082, chk=0.1077ANFIS model 17: y(k-1) u(k-4) --&gt; trn=0.0925, chk=0.0948ANFIS model 18: y(k-1) u(k-5) --&gt; trn=0.1533, chk=0.1531ANFIS model 19: y(k-1) u(k-6) --&gt; trn=0.1952, chk=0.1853Currently selected inputs: y(k-1) u(k-4)Selecting input 3 ...ANFIS model 20: y(k-1) u(k-4) y(k-2) --&gt; trn=0.0808, chk=0.0822ANFIS model 21: y(k-1) u(k-4) y(k-3) --&gt; trn=0.0806, chk=0.0836ANFIS model 22: y(k-1) u(k-4) y(k-4) --&gt; trn=0.0817, chk=0.0855ANFIS model 23: y(k-1) u(k-4) u(k-1) --&gt; trn=0.0886, chk=0.0912ANFIS model 24: y(k-1) u(k-4) u(k-2) --&gt; trn=0.0835, chk=0.0843ANFIS model 25: y(k-1) u(k-4) u(k-3) --&gt; trn=0.0609, chk=0.0604ANFIS model 26: y(k-1) u(k-4) u(k-5) --&gt; trn=0.0848, chk=0.0867ANFIS model 27: y(k-1) u(k-4) u(k-6) --&gt; trn=0.0890, chk=0.0894Currently selected inputs: y(k-1) u(k-3) u(k-4)Elapsed time = 1.091000</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="drydemo_img07.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">For input selection, another more computation intensive approach is to doan exhaustive search on all possible combinations of the inputcandidates. The function that performs exhaustive search is exhsrch,which selects 3 inputs from 10 candidates.  However, exhsrch usuallyinvolves a significant amount of computation if all combinations aretried.  For instance, if 3 is selected out of 10, the total number ofANFIS models is C(10, 3) = 120.</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Fortunately, for dynamical system identification, we do know that the inputs should not come from either of the following two sets of input candidates exclusively:</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Y = {y(k-1), y(k-2), y(k-3), y(k-4)}</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">U = {u(k-1), u(k-2), u(k-3), u(k-4), u(k-5), u(k-6)}</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">A reasonable guess would be to take two inputs from Y and one from U toform the inputs to ANFIS; the total number of ANFIS models is thenC(4,2)*6=36, which is much less.  The above plot shows that the selectedinputs are y(k-1), y(k-2) and u(k-3), with a training RMSE of 0.0474 andchecking RMSE of 0.0485, which are better than ARX models and ANFIS viasequential forward search.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">group1 = [1 2 3 4];	<span style="color:green">% y(k-1), y(k-2), y(k-3), y(k-4)</span>group2 = [1 2 3 4];	<span style="color:green">% y(k-1), y(k-2), y(k-3), y(k-4)</span>group3 = [5 6 7 8 9 10];	<span style="color:green">% u(k-1) through y(k-6)</span>anfis_n = 6*length(group3);index = zeros(anfis_n, 3);trn_error = zeros(anfis_n, 1);chk_error = zeros(anfis_n, 1);<span style="color:green">% ======= Training options </span>mf_n = 2;mf_type = <span style="color:#B20000">'gbellmf'</span>;epoch_n = 1;ss = 0.1;ss_dec_rate = 0.5;ss_inc_rate = 1.5;<span style="color:green">% ====== Train ANFIS with different input variables</span>fprintf(<span style="color:#B20000">'\nTrain %d ANFIS models, each with 3 inputs selected from 10 candidates...\n\n'</span>,<span style="color:blue">...</span>    anfis_n);model = 1;<span style="color:blue">for</span> i=1:length(group1),    <span style="color:blue">for</span> j=i+1:length(group2),        <span style="color:blue">for</span> k=1:length(group3),            in1 = deblank(input_name(group1(i), :));            in2 = deblank(input_name(group2(j), :));            in3 = deblank(input_name(group3(k), :));            index(model, :) = [group1(i) group2(j) group3(k)];            trn_data = data(1:trn_data_n, [group1(i) group2(j) group3(k) size(data,2)]);            chk_data = data(trn_data_n+1:trn_data_n+300, [group1(i) group2(j) group3(k) size(data,2)]);            in_fismat = genfis1(trn_data, mf_n, mf_type);            [trn_out_fismat t_err step_size chk_out_fismat c_err] = <span style="color:blue">...</span>                anfis(trn_data, in_fismat, <span style="color:blue">...</span>                [epoch_n nan ss ss_dec_rate ss_inc_rate], <span style="color:blue">...</span>                [0 0 0 0], chk_data, 1);            trn_error(model) = min(t_err);            chk_error(model) = min(c_err);            fprintf(<span style="color:#B20000">'ANFIS model = %d: %s %s %s'</span>, model, in1, in2, in3);            fprintf(<span style="color:#B20000">' --&gt; trn=%.4f,'</span>, trn_error(model));            fprintf(<span style="color:#B20000">' chk=%.4f'</span>, chk_error(model));            fprintf(<span style="color:#B20000">'\n'</span>);            model = model+1;        <span style="color:blue">end</span>    <span style="color:blue">end</span><span style="color:blue">end</span><span style="color:green">% ====== Reordering according to training error</span>[a b] = sort(trn_error);b = flipud(b);		<span style="color:green">% List according to decreasing trn error</span>trn_error = trn_error(b);chk_error = chk_error(b);index = index(b, :);<span style="color:green">% ====== Display training and checking errors</span>x = (1:anfis_n)';subplot(2,1,1);plot(x, trn_error, <span style="color:#B20000">'-'</span>, x, chk_error, <span style="color:#B20000">'-'</span>, <span style="color:blue">...</span>    x, trn_error, <span style="color:#B20000">'o'</span>, x, chk_error, <span style="color:#B20000">'*'</span>);tmp = x(:, ones(1, 3))';X = tmp(:);tmp = [zeros(anfis_n, 1) max(trn_error, chk_error) nan*ones(anfis_n, 1)]';Y = tmp(:);hold on; plot(X, Y, <span style="color:#B20000">'g'</span>); hold off;axis([1 anfis_n -inf inf]);set(gca, <span style="color:#B20000">'xticklabel'</span>, []);<span style="color:green">% ====== Add text of input variables</span><span style="color:blue">for</span> k = 1:anfis_n,    text(x(k), 0, <span style="color:blue">...</span>        [input_name(index(k,1), :) <span style="color:#B20000">' '</span> <span style="color:blue">...</span>            input_name(index(k,2), :) <span style="color:#B20000">' '</span> <span style="color:blue">...</span>            input_name(index(k,3), :)]);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -