📄 bookstein.m
字号:
function [z, a, b, alpha] = bookstein (X, show);%BOOKSTEIN Algebraic ellipse fit %% [z, a, b, alpha] = bookstein (X, show{0});%% Approximate ellipse to points <X(i,1),X(i,2)>.% Invariant under euclidian transformation, see% BOOKSTEIN, "Fitting conic secions to scattered data", in% Computer graphics & image processing 9, 56-71 (1979).%% X: given points <X(i,1),X(i,2)>% show: if (show == 1), test output%% z, a, b, alpha: parameters for ellipse found if (nargin < 2), show = 0; end; m = size(X,1); A = [X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 ... X(:,1) X(:,2) ones(size(X(:,1)))]; S = A'*A; T = S(1:3,1:3) - S(1:3,4:6)*(S(4:6,4:6)'\S(4:6,1:3)); T = diag([1,2,1])*T; [V, D] = eig(T); emin = 0; kmin = 0; for k = 1:3, A = V(1,k); B = V(2,k); C = V(3,k); I0 = (A + C); I1 = (A*C - B^2/4); if (I1 <= 0), % this is not an ellipse ! else val = (I0^2 - 4*I1)/(I0^2 - 2*I1); if (emin == 0 | val < emin), emin = val; kmin = k; end end end if (kmin == 0), kmin = 1; end; % not an ellipse y1 = V(:,kmin); y2 = -(S(4:6,4:6)')\(S(1:3,4:6)'*y1); u = [y1; y2]; [z, a, b, alpha, err] = ellipse_params (u, show);end % bookstein
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -