📄 blackscholes.asv
字号:
% PURPOSE : Demonstrate the differences between the following% filters on an options pricing problem.% % 1) Extended Kalman Filter (EKF)% 2) Unscented Kalman Filter (UKF)% 3) Particle Filter (PF)% 4) PF with EKF proposal (PFEKF)% 5) PF with UKF proposal (PFUKF)% For more details refer to:% AUTHORS : Nando de Freitas (jfgf@cs.berkeley.edu)% Rudolph van der Merwe (rvdmerwe@ece.ogi.edu)% + We re-used a bit of code by Mahesan Niranjan. % DATE : 17 August 2000clear all;echo off;path('./ukf',path);path('./data',path);% INITIALISATION AND PARAMETERS:% ==============================doPlot = 0; % 1 plot online. 0 = only plot at the end.g1 = 3; % Paramater of Gamma transition prior.g2 = 2; % Parameter of Gamman transition prior. % Thus mean = 3/2 and var = 3/4.T = 204; % Number of time steps.R = diag([1e-5 1e-5]); % EKF's measurement noise variance. Q = diag([1e-7 1e-5]); % EKF's process noise variance.P01 = 0.1; % EKF's initial variance of the % interest rate.P02 = 0.1; % EKF's initial variance of the volatility.N = 10; % Number of particles.optionNumber = 1; % There are 5 pairs of options.resamplingScheme = 1; % The possible choices are % systematic sampling (2), % residual (1) % and multinomial (3). % They're all O(N) algorithms. P01_ukf = 0.1P02_ukf = 0.1Q_ukf = Q;R_ukf = R;initr=.01initsig=.15Q_pfukf = 10*1e-5*eye(2);R_pfukf = 1e-6*eye(2); alpha = 1; % UKF : point scaling parameterbeta = 2; % UKF : scaling parameter for higher order terms of Taylor series expansion kappa = 1; % UKF : sigma point selection scaling parameter (best to leave this = 0)no_of_experiments = 1; % Number of times the experiment is % repeated (for statistical purposes).% DATA STRUCTURES FOR RESULTS% ===========================errorcTrivial = zeros(no_of_experiments,1);errorpTrivial = errorcTrivial;errorcPF = errorcTrivial;errorpPF = errorcTrivial;errorcPFUKF = errorcTrivial;errorpPFUKF = errorcTrivial;% LOAD THE DATA:% =============fprintf('\n')fprintf('Loading the data')fprintf('\n')load c2925.prn; load p2925.prn;load c3025.prn; load p3025.prn;X=[2925; 3025];[d1,i1]=sort(c2925(:,1)); Y1=c2925(i1,:); Z1=p2925(i1,:);[d2,i2]=sort(c3025(:,1)); Y2=c3025(i2,:); Z2=p3025(i2,:);d=Y1(:,1); % d - date to maturity.St(1,:) = Y1(:,3)'; C(1,:) = Y1(:,2)'; P(1,:) = Z1(:,2)';St(2,:) = Y2(:,3)'; C(2,:) = Y2(:,2)'; P(2,:) = Z2(:,2)';% St - Stock price.% C - Call option price.% P - Put Option price.% X - Strike price.% Normalise with respect to the strike price:for i=1:2 Cox(i,:) = C(i,:) / X(i); Sox(i,:) = St(i,:) / X(i); Pox(i,:) = P(i,:) / X(i);endCpred=zeros(T,2);Ppred=zeros(T,2);% PLOT THE LOADED DATA:% ====================figure(1)clf;plot(Cox');ylabel('Call option prices','fontsize',15);xlabel('Time to maturity','fontsize',15);fprintf('\n')fprintf('Press a key to continue') pause;fprintf('\n')fprintf('\n')fprintf('Training has started')fprintf('\n')% SPECIFY THE INPUTS AND OUTPUTS% ==============================ii=optionNumber; % Only one call price. Change 1 to 3, etc. for other prices.X = X(ii,1);St = Sox(ii,1:T);C = Cox(ii,1:T);P = Pox(ii,1:T);counter=1:1:T;tm = (224*ones(size(counter))-counter)/260;u = [St' tm']';y = [C' P']'; % Call and put prices.% MAIN LOOP% =========for expr=1:no_of_experiments, rand('state',sum(100*clock)); % Shuffle the pack! randn('state',sum(100*clock)); % Shuffle the pack! %%%%%%%%%%%%%%% PERFORM SEQUENTIAL MONTE CARLO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ============================== %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pf = ones(2,T,N); % These are the particles for the estimate % of x. Note that there's no need to store % them for all t. We're only doing this to % show you all the nice plots at the end.xparticlePred_pf = ones(2,T,N); % One-step-ahead predicted values of the states.yPred_pf = ones(2,T,N); % One-step-ahead predicted values of y.w = ones(T,N); % Importance weights.% Initialisation:for i=1:N, xparticle_pf(1,1,i) = initr; % sqrt(initr)*randn(1,1); xparticle_pf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1);end;disp(' '); tic; % Initialize timer for benchmarkingfor t=2:T, fprintf('PF : t = %i / %i \r',t,T); fprintf('\n') % PREDICTION STEP: % ================ % We use the transition prior as proposal. for i=1:N, xparticlePred_pf(:,t,i) = feval('bsffun',xparticle_pf(:,t-1,i),t) + sqrtm(Q)*randn(2,1); end; % EVALUATE IMPORTANCE WEIGHTS: % ============================ % For our choice of proposal, the importance weights are give by: for i=1:N, yPred_pf(:,t,i) = feval('bshfun',xparticlePred_pf(:,t,i),u(:,t),t); lik = exp(-0.5*(y(:,t)-yPred_pf(:,t,i))'*inv(R)*(y(:,t)-yPred_pf(:,t,i)) ) + 1e-99; % Deal with ill-conditioning. w(t,i) = lik; end; w(t,:) = w(t,:)./sum(w(t,:)); % Normalise the weights. % SELECTION STEP: % =============== % Here, we give you the choice to try three different types of % resampling algorithms. Note that the code for these algorithms % applies to any problem! if resamplingScheme == 1 outIndex = residualR(1:N,w(t,:)'); % Residual resampling. elseif resamplingScheme == 2 outIndex = systematicR(1:N,w(t,:)'); % Systematic resampling. else outIndex = multinomialR(1:N,w(t,:)'); % Multinomial resampling. end; xparticle_pf(:,t,:) = xparticlePred_pf(:,t,outIndex); % Keep particles with % resampled indices.end; % End of t loop.time_pf = toc; % How long did this take?% Compute posterior mean predictions:yPFmeanC=zeros(1,T);yPFmeanP=zeros(1,T);for t=1:T, yPFmeanC(t) = mean(yPred_pf(1,t,:)); yPFmeanP(t) = mean(yPred_pf(2,t,:)); end; figure(4)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0:1e-3:20e-3];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(r_t|S_t,t_m,C_t,P_t)','fontsize',15)for t=11:20:200, [range,domain]=hist(xparticle_pf(1,t,:),thex); waterfall(domain,t,range/sum(range));end;view(-30,80);rotate3d on;a=get(gca);set(gca,'ygrid','off');figure(5)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0.1:1e-2:0.25];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(\sigma_t|S_t,t_m,C_t,P_t)','fontsize',15)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -