⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blackscholes.m

📁 介绍了kf,ekf,ukf ,pf ,upf 的程序代码
💻 M
字号:
% PURPOSE : Demonstrate the differences between the following% filters on an options pricing problem.%           %           1) Particle Filter         (PF)%           2)PF with UKF proposal    (PFUKF)clear all;echo off;path('./ukf',path);path('./data',path);% INITIALISATION AND PARAMETERS:% ==============================doPlot = 0;                 % 1 plot online. 0 = only plot at the end.g1 = 3;                     % Paramater of Gamma transition prior.g2 = 2;                     % Parameter of Gamman transition prior.                            % Thus mean = 3/2 and var = 3/4.T = 204;                    % Number of time steps.R = diag([1e-5 1e-5]);      % EKF's measurement noise variance. Q = diag([1e-7 1e-5]);      % EKF's process noise variance.N = 10;                     % Number of particles.optionNumber = 1;           % There are 5 pairs of options.resamplingScheme = 1;       % The possible choices are                            % systematic sampling (2),                            % residual (1)                            % and multinomial (3).                             % They're all O(N) algorithms. P01_ukf = 0.1P02_ukf = 0.1Q_ukf = Q;R_ukf = R;initr=.01initsig=.15Q_pfukf = 10*1e-5*eye(2);R_pfukf = 1e-6*eye(2);			    alpha = 1;                     % UKF : point scaling parameterbeta  = 2;                     % UKF : scaling parameter for higher order terms of Taylor series expansion kappa = 1;                     % UKF : sigma point selection scaling parameter (best to leave this = 0)no_of_experiments = 1;         % Number of times the experiment is                               % repeated (for statistical purposes).% DATA STRUCTURES FOR RESULTS% ===========================errorcTrivial = zeros(no_of_experiments,1);errorpTrivial = errorcTrivial;errorcPF      = errorcTrivial;errorpPF      = errorcTrivial;errorcPFUKF   = errorcTrivial;errorpPFUKF   = errorcTrivial;% LOAD THE DATA:% =============fprintf('\n')fprintf('Loading the data')fprintf('\n')load c2925.prn;         load p2925.prn;load c3025.prn;         load p3025.prn;X=[2925; 3025];[d1,i1]=sort(c2925(:,1));  Y1=c2925(i1,:);      Z1=p2925(i1,:);[d2,i2]=sort(c3025(:,1));  Y2=c3025(i2,:);      Z2=p3025(i2,:);d=Y1(:,1); % d - date to maturity.St(1,:) = Y1(:,3)';   C(1,:) = Y1(:,2)';  P(1,:) = Z1(:,2)';St(2,:) = Y2(:,3)';   C(2,:) = Y2(:,2)';  P(2,:) = Z2(:,2)';% St - Stock price.% C - Call option price.% P - Put Option price.% X - Strike price.% Normalise with respect to the strike price:for i=1:2   Cox(i,:) = C(i,:) / X(i);   Sox(i,:) = St(i,:) / X(i);   Pox(i,:) = P(i,:) / X(i);endCpred=zeros(T,2);Ppred=zeros(T,2);% PLOT THE LOADED DATA:% ====================figure(1)clf;plot(Cox');ylabel('Call option prices','fontsize',15);xlabel('Time to maturity','fontsize',15);fprintf('\n')fprintf('Press a key to continue')  pause;fprintf('\n')fprintf('\n')fprintf('Training has started')fprintf('\n')% SPECIFY THE INPUTS AND OUTPUTS% ==============================ii=optionNumber;   % Only one call price. Change 1 to 3, etc. for other prices.X = X(ii,1);St = Sox(ii,1:T);C = Cox(ii,1:T);P = Pox(ii,1:T);counter=1:1:T;tm = (224*ones(size(counter))-counter)/260;u = [St' tm']';y = [C' P']'; % Call and put prices.% MAIN LOOP% =========for expr=1:no_of_experiments,  rand('state',sum(100*clock));   % Shuffle the pack!  randn('state',sum(100*clock));   % Shuffle the pack!  %%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ==============================  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pf = ones(2,T,N);      % These are the particles for the estimate                                 % of x. Note that there's no need to store                                 % them for all t. We're only doing this to                                 % show you all the nice plots at the end.xparticlePred_pf = ones(2,T,N);    % One-step-ahead predicted values of the states.yPred_pf = ones(2,T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                   % Importance weights.% Initialisation:for i=1:N,  xparticle_pf(1,1,i) = initr; % sqrt(initr)*randn(1,1);  xparticle_pf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1);end;disp(' '); tic;                             % Initialize timer for benchmarkingfor t=2:T,      fprintf('PF :  t = %i / %i  \r',t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the transition prior as proposal.  for i=1:N,    xparticlePred_pf(:,t,i) = feval('bsffun',xparticle_pf(:,t-1,i),t) + sqrtm(Q)*randn(2,1);      end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pf(:,t,i) = feval('bshfun',xparticlePred_pf(:,t,i),u(:,t),t);            lik = exp(-0.5*(y(:,t)-yPred_pf(:,t,i))'*inv(R)*(y(:,t)-yPred_pf(:,t,i)) ) + 1e-99; % Deal with ill-conditioning.    w(t,i) = lik;      end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pf(:,t,:) = xparticlePred_pf(:,t,outIndex); % Keep particles with                                                    % resampled indices.end;   % End of t loop.time_pf = toc;    % How long did this take?% Compute posterior mean predictions:yPFmeanC=zeros(1,T);yPFmeanP=zeros(1,T);for t=1:T,  yPFmeanC(t) = mean(yPred_pf(1,t,:));  yPFmeanP(t) = mean(yPred_pf(2,t,:));  end;  figure(4)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0:1e-3:20e-3];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(r_t|S_t,t_m,C_t,P_t)','fontsize',15)for t=11:20:200,  [range,domain]=hist(xparticle_pf(1,t,:),thex);  waterfall(domain,t,range/sum(range));end;view(-30,80);rotate3d on;a=get(gca);set(gca,'ygrid','off');figure(5)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0.1:1e-2:0.25];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(\sigma_t|S_t,t_m,C_t,P_t)','fontsize',15)%v=[0 1];%caxis(v);for t=11:20:200,  [range,domain]=hist(xparticle_pf(2,t,:),thex);  waterfall(domain,t,range/sum(range));end;view(-30,80);rotate3d on;a=get(gca);set(gca,'ygrid','off');%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ======== UKF proposal ========  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfukf = ones(2,T,N);      % These are the particles for the estimate                                    % of x. Note that there's no need to store                                    % them for all t. We're only doing this to                                    % show you all the nice plots at the end.Pparticle_pfukf = cell(N,1);        % Particles for the covariance of x.%Initializationfor i=1:N,  xparticle_pfukf(1,1,i) = initr;   % sqrt(initr)*randn(1,1);  xparticle_pfukf(2,1,i) = initsig; % sqrt(initsig)*randn(1,1);  Pparticle_pfukf{i} = ones(2,2,T);  for t=1:T,    Pparticle_pfukf{i}(:,:,t) = diag([P01_ukf P02_ukf]);  endend  xparticlePred_pfukf = ones(2,T,N);       % One-step-ahead predicted values of the states.PparticlePred_pfukf = Pparticle_pfukf;   % One-step-ahead predicted values of P.yPred_pfukf = ones(2,T,N);               % One-step-ahead predicted values of y.w = ones(T,N);                           % Importance weights.muPred_pfukf = ones(2,T);                % EKF O-s-a estimate of the mean of the states.PPred_pfukf = ones(2,2);                 % EKF O-s-a estimate of the variance of the states.mu_pfukf = ones(2,T,N);                  % EKF estimate of the mean of the states.P_pfukf = ones(2,2,T);                   % EKF estimate of the variance of the states.error=0;disp(' ');tic;if (1),for t=2:T,      fprintf('PF-UKF : t = %i / %i  \r',t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the UKF as proposal.  for i=1:N,    % Call Unscented Kalman Filter    [mu_pfukf(:,t,i),P_pfukf(:,:,t)]=ukf(xparticle_pfukf(:,t-1,i),Pparticle_pfukf{i}(:,:,t-1),u(:,t),Q_pfukf,'ukf_bsffun',y(:,t),R_pfukf,'ukf_bshfun',t,alpha,beta,kappa);    xparticlePred_pfukf(:,t,i) = mu_pfukf(:,t,i) + sqrtm(P_pfukf(:,:,t))*randn(2,1);    PparticlePred_pfukf{i}(:,:,t) = P_pfukf(:,:,t);      end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pfukf(:,t,i) = feval('bshfun',xparticlePred_pfukf(:,t,i),u(:,t),t);    lik = exp(-0.5*(y(:,t)-yPred_pfukf(:,t,i))'*inv(R)*(y(:,t)-yPred_pfukf(:,t,i)) ) + 1e-99;    prior = exp(-0.5*(xparticlePred_pfukf(:,t,i)- xparticle_pfukf(:,t-1,i))'*inv(Q) * (xparticlePred_pfukf(:,t,i)-xparticle_pfukf(:,t-1,i) ))+ 1e-99;        proposal = inv(sqrt(det(PparticlePred_pfukf{i}(:,:,t)))) * exp(-0.5*(xparticlePred_pfukf(:,t,i)-mu_pfukf(:,t,i))'*inv(PparticlePred_pfukf{i}(:,:,t)) * (xparticlePred_pfukf(:,t,i)-mu_pfukf(:,t,i)))+ 1e-99;            w(t,i) = lik*prior/proposal;        end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pfukf(:,t,:) = xparticlePred_pfukf(:,t,outIndex); % Keep particles with                                              % resampled indices.  for i=1:N,					          Pparticle_pfukf{i} = PparticlePred_pfukf{outIndex(i)};  end  end;   % End of t loop.endtime_pfukf = toc;% Compute posterior mean predictions:yPFUKFmeanC=zeros(1,T);yPFUKFmeanP=zeros(1,T);for t=1:T,  yPFUKFmeanC(t) = mean(yPred_pfukf(1,t,:));  yPFUKFmeanP(t) = mean(yPred_pfukf(2,t,:));  end;  errorcTrivial(expr) = norm(C(104:204)-C(103:203));errorpTrivial(expr) = norm(P(104:204)-P(103:203));errorcPF(expr) =norm(C(104:204)-yPFmeanC(104:204));errorpPF(expr) =norm(P(104:204)-yPFmeanP(104:204));errorcPFUKF(expr) =norm(C(104:204)-yPFUKFmeanC(104:204));errorpPFUKF(expr) =norm(P(104:204)-yPFUKFmeanP(104:204));disp(' ');disp(['Experiment ' num2str(expr) ' of ' num2str(no_of_experiments) ' : Mean square errors sqrt(sum((errors).^2))']);disp('------------------------------------------------------------');disp(' ');disp(['Trivial call   = ' num2str(errorcTrivial(expr))]);disp(['PF call        = ' num2str(errorcPF(expr))]);disp(['PF-UKF call    = ' num2str(errorcPFUKF(expr))]);disp(['Trivial put    = ' num2str(errorpTrivial(expr))]);disp(['PF put         = ' num2str(errorpPF(expr))]);disp(['PF-UKF put     = ' num2str(errorpPFUKF(expr))]);figure(9)bti=20;lw=2;clf;subplot(211)p0=plot(bti:T,y(1,bti:T),'k-o','linewidth',lw); hold on;p1=plot(bti:T,yPFmeanC(bti:T),'m','linewidth',lw);p3=plot(bti:T,yPFUKFmeanC(bti:T),'b','linewidth',lw); hold off;ylabel('Call price','fontsize',15);legend([p0 p1 p3],'Actual price','PF prediction','PF-UKF prediction');v=axis;axis([bti T v(3) v(4)]);subplot(212)p0=plot(bti:T,y(2,bti:T),'k-o','linewidth',lw); hold on;p1=plot(bti:T,yPFmeanP(bti:T),'m','linewidth',lw);p3=plot(bti:T,yPFUKFmeanP(bti:T),'b','linewidth',lw); hold off;ylabel('Put price','fontsize',15);legend([p0 p1 p3],'Actual price','PF prediction','PF-UKF prediction');xlabel('Time (days)','fontsize',15)v=axis;axis([bti T v(3) v(4)]);zoom on;end   % END OF MAIN LOOP% CALCULATE MEAN AND VARIANCE OF EXPERIMENT RESULTS% meanserrorcTrivial_mean = mean(errorcTrivial);errorcPF_mean      = mean(errorcPF);errorcPFUKF_mean   = mean(errorcPFUKF);errorpTrivial_mean = mean(errorpTrivial);errorpPF_mean      = mean(errorpPF);errorpPFUKF_mean   = mean(errorpPFUKF);% varianceserrorcTrivial_var = var(errorcTrivial);errorcPF_var      = var(errorcPF);errorcPFUKF_var   = var(errorcPFUKF);errorpTrivial_var = var(errorpTrivial);errorpPF_var      = var(errorpPF);errorpPFUKF_var   = var(errorpPFUKF);disp(' ');disp('Mean and Variance of MSE ');disp('-------------------------');disp(' ');disp(['Trivial call   : ' num2str(errorcTrivial_mean) ' (' num2str(errorcTrivial_var) ')']);disp(['PF call        : ' num2str(errorcPF_mean) ' (' num2str(errorcPF_var) ')']);disp(['PF-UKF call    : ' num2str(errorcPFUKF_mean) ' (' num2str(errorcPFUKF_var) ')']);disp(['Trivial put    : ' num2str(errorpTrivial_mean) ' (' num2str(errorpTrivial_var) ')']);disp(['PF put         : ' num2str(errorpPF_mean) ' (' num2str(errorpPF_var) ')']);disp(['PF-UKF put     : ' num2str(errorpPFUKF_mean) ' (' num2str(errorpPFUKF_var) ')']);figure(10);subplot(211);p1=semilogy(errorcTrivial,'k','linewidth',lw); hold on;p4=semilogy(errorcPF,'m','linewidth',lw);p6=semilogy(errorcPFUKF,'b','linewidth',lw); hold off;legend([p1 p4 p6],'trivial','PF','PF-UKF');ylabel('MSE','fontsize',12);xlabel('experiment','fontsize',12);title('CALL Options Mean Prediction Error','fontsize',14);subplot(212);p1=semilogy(errorpTrivial,'k','linewidth',lw); hold on;p4=semilogy(errorpPF,'m','linewidth',lw);p6=semilogy(errorpPFUKF,'b','linewidth',lw); hold off;legend([p1 p4 p6],'trivial','PF','PF-UKF');ylabel('MSE','fontsize',12);xlabel('experiment','fontsize',12);title('PUT Options Mean Prediction Error','fontsize',14);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -