📄 example_2833xi2c_rtc.c
字号:
// TI File $Revision: /main/9 $
// Checkin $Date: August 10, 2007 09:05:58 $
//###########################################################################
//
// FILE: Example_2833xI2c_rtc.c
//
// TITLE: DSP2833x I2C RTC Example
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// This program requires an external I2C RTC connected to
// the I2C bus at address 0x6f.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This program will write 1-14 words to RTC and read them back.
// The data written and the RTC address written to are contained
// in the message structure, I2cMsgOut1. The data read back will be
// contained in the message structure I2cMsgIn1.
//
// This program will work with the on-board I2C RTC supplied on
// the F2833x eZdsp.
//
//
//###########################################################################
// Original Author: D.F.
//
// $TI Release: DSP2833x Header Files V1.01 $
// $Release Date: September 26, 2007 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// Note: I2C Macros used in this example can be found in the
// DSP2833x_I2C_defines.h file
// Prototype statements for functions found within this file.
void I2CA_Init(void);
Uint16 I2CA_WriteData(struct I2CMSG *msg);
Uint16 I2CA_ReadData(struct I2CMSG *msg);
void WriteData(struct I2CMSG *msg,Uint16 *MsgBuffer,Uint16 MemoryAdd,Uint16 NumOfBytes);
interrupt void i2c_int1a_isr(void);
void pass(void);
void fail(void);
#define I2C_SLAVE_ADDR 0x6f
#define I2C_NUMBYTES 1
#define I2C_RNUMBYTES 8
#define I2C_RTC_HIGH_ADDR 0x00
#define I2C_RTC_LOW_ADDR 0x30
Uint16 YEAR = 0x2007;
Uint16 MONTH = 0x12;
Uint16 DAY = 0x03;
Uint16 WEEK = 0x01;
Uint16 HOUR = 0x15;
Uint16 MINUTE = 0x10;
Uint16 SECOND = 0x00;
#define Y2K 0x0037
#define DW 0x0036
#define YR 0x0035
#define MO 0x0034
#define DT 0x0033
#define HR 0x0032
#define MN 0x0031
#define SC 0x0030
// Global variables
// Two bytes will be used for the outgoing address,
struct I2CMSG I2cMsgOut1={I2C_MSGSTAT_SEND_WITHSTOP,
I2C_SLAVE_ADDR,
I2C_NUMBYTES,
I2C_RTC_HIGH_ADDR,
I2C_RTC_LOW_ADDR};
struct I2CMSG I2cMsgIn1={ I2C_MSGSTAT_SEND_NOSTOP,
I2C_SLAVE_ADDR,
I2C_RNUMBYTES,
I2C_RTC_HIGH_ADDR,
I2C_RTC_LOW_ADDR};
struct I2CMSG *CurrentMsgPtr; // Used in interrupts
Uint16 PassCount;
Uint16 FailCount;
void main(void)
{
Uint16 i;
CurrentMsgPtr = &I2cMsgOut1;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();
// Setup only the GP I/O only for I2C functionality
InitI2CGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.I2CINT1A = &i2c_int1a_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
I2CA_Init();
// Step 5. User specific code
// Enable interrupts required for this example
// Enable I2C interrupt 1 in the PIE: Group 8 interrupt 1
PieCtrlRegs.PIEIER8.bit.INTx1 = 1;
// Enable CPU INT8 which is connected to PIE group 8
IER |= M_INT8;
EINT;
// Application loop
for(;;)
{
//////////////////////////////////
// Write data to RTC CTRL section //
//////////////////////////////////
// Check the outgoing message to see if it should be sent.
// In this example it is initialized to send with a stop bit.
if(I2cMsgOut1.MsgStatus == I2C_MSGSTAT_SEND_WITHSTOP)
{
i = 0x02;
WriteData(&I2cMsgOut1,&i,0x003f,1);
i = 0x06;
WriteData(&I2cMsgOut1,&i,0x003f,1);
i = YEAR >> 8;
WriteData(&I2cMsgOut1,&i,Y2K,1);
i = YEAR & 0xff;
WriteData(&I2cMsgOut1,&i,YR,1);
i = MONTH;
WriteData(&I2cMsgOut1,&i,MO,1);
i = DAY;
WriteData(&I2cMsgOut1,&i,DT,1);
i = WEEK;
WriteData(&I2cMsgOut1,&i,DW,1);
i = HOUR;
WriteData(&I2cMsgOut1,&i,HR,1);
i = MINUTE;
WriteData(&I2cMsgOut1,&i,MN,1);
i = SECOND;
WriteData(&I2cMsgOut1,&i,SC,1);
} // end of write section
///////////////////////////////////
// Read data from RTC section //
///////////////////////////////////
// Check outgoing message status. Bypass read section if status is
// not inactive.
if (I2cMsgOut1.MsgStatus == I2C_MSGSTAT_INACTIVE)
{
// Check incoming message status.
if(I2cMsgIn1.MsgStatus == I2C_MSGSTAT_SEND_NOSTOP)
{
// RTC address setup portion
while(I2CA_ReadData(&I2cMsgIn1) != I2C_SUCCESS)
{
// Maybe setup an attempt counter to break an infinite while
// loop. The RTC will send back a NACK while it is performing
// a write operation. Even though the write communique is
// complete at this point, the RTC could still be busy
// programming the data. Therefore, multiple attempts are
// necessary.
}
// Update current message pointer and message status
CurrentMsgPtr = &I2cMsgIn1;
I2cMsgIn1.MsgStatus = I2C_MSGSTAT_SEND_NOSTOP_BUSY;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -