⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cal_main.c

📁 tsai经典标定程序 MATLAB语言
💻 C
📖 第 1 页 / 共 5 页
字号:
void      ncc_compute_better_R (){    double    r1,              r2,              r3,              r4,              r5,              r6,              r7,              sa,              ca,              sb,              cb,              sg,              cg;    r1 = U[0] * cc.Ty / cp.sx;    r2 = U[1] * cc.Ty / cp.sx;    r3 = U[2] * cc.Ty / cp.sx;    r4 = U[4] * cc.Ty;    r5 = U[5] * cc.Ty;    r6 = U[6] * cc.Ty;    /* use the outer product of the first two rows to get the last row */    r7 = r2 * r6 - r3 * r5;    /* now find the RPY angles corresponding to the estimated rotation matrix */    cc.Rz = atan2 (r4, r1);    SINCOS (cc.Rz, sg, cg);    cc.Ry = atan2 (-r7, r1 * cg + r4 * sg);    cc.Rx = atan2 (r3 * sg - r6 * cg, r5 * cg - r2 * sg);    SINCOS (cc.Rx, sa, ca);    SINCOS (cc.Ry, sb, cb);    /* now generate a more orthonormal rotation matrix from the RPY angles */    cc.r1 = cb * cg;    cc.r2 = cg * sa * sb - ca * sg;    cc.r3 = sa * sg + ca * cg * sb;    cc.r4 = cb * sg;    cc.r5 = sa * sb * sg + ca * cg;    cc.r6 = ca * sb * sg - cg * sa;    cc.r7 = -sb;    cc.r8 = cb * sa;    cc.r9 = ca * cb;}void      ncc_compute_approximate_f_and_Tz (){    int       i;    dmat      M,              a,              b;    M = newdmat (0, (cd.point_count - 1), 0, 1, &errno);    if (errno) {	fprintf (stderr, "ncc compute apx: unable to allocate matrix M\n");	exit (-1);    }    a = newdmat (0, 1, 0, 0, &errno);    if (errno) {	fprintf (stderr, "ncc compute apx: unable to allocate vector a\n");	exit (-1);    }    b = newdmat (0, (cd.point_count - 1), 0, 0, &errno);    if (errno) {	fprintf (stderr, "ncc compute apx: unable to allocate vector b\n");	exit (-1);    }    for (i = 0; i < cd.point_count; i++) {	M.el[i][0] = cc.r4 * cd.xw[i] + cc.r5 * cd.yw[i] + cc.r6 * cd.zw[i] + cc.Ty;	M.el[i][1] = -Yd[i];	b.el[i][0] = (cc.r7 * cd.xw[i] + cc.r8 * cd.yw[i] + cc.r9 * cd.zw[i]) * Yd[i];    }    if (solve_system (M, a, b)) {	fprintf (stderr, "ncc compute apx: unable to solve system  Ma=b\n");	exit (-1);    }    /* update the calibration constants */    cc.f = a.el[0][0];    cc.Tz = a.el[1][0];    cc.kappa1 = 0.0;		/* this is the assumption that our calculation was made under */    freemat (M);    freemat (a);    freemat (b);}/************************************************************************/void      ncc_compute_exact_f_and_Tz_error (m_ptr, n_ptr, params, err)    integer  *m_ptr;		/* pointer to number of points to fit */    integer  *n_ptr;		/* pointer to number of parameters */    doublereal *params;		/* vector of parameters */    doublereal *err;		/* vector of error from data */{    int       i;    double    xc,              yc,              zc,              Xu_1,              Yu_1,              Xu_2,              Yu_2,              distortion_factor,              f,              Tz,              kappa1;    f = params[0];    Tz = params[1];    kappa1 = params[2];    for (i = 0; i < cd.point_count; i++) {	/* convert from world coordinates to camera coordinates */	xc = cc.r1 * cd.xw[i] + cc.r2 * cd.yw[i] + cc.r3 * cd.zw[i] + cc.Tx;	yc = cc.r4 * cd.xw[i] + cc.r5 * cd.yw[i] + cc.r6 * cd.zw[i] + cc.Ty;	zc = cc.r7 * cd.xw[i] + cc.r8 * cd.yw[i] + cc.r9 * cd.zw[i] + Tz;	/* convert from camera coordinates to undistorted sensor coordinates */	Xu_1 = f * xc / zc;	Yu_1 = f * yc / zc;	/* convert from distorted sensor coordinates to undistorted sensor coordinates */	distortion_factor = 1 + kappa1 * r_squared[i];	Xu_2 = Xd[i] * distortion_factor;	Yu_2 = Yd[i] * distortion_factor;        /* record the error in the undistorted sensor coordinates */        err[i] = hypot (Xu_1 - Xu_2, Yu_1 - Yu_2);    }}void      ncc_compute_exact_f_and_Tz (){#define NPARAMS 3    int       i;    /* Parameters needed by MINPACK's lmdif() */    integer     m = cd.point_count;    integer     n = NPARAMS;    doublereal  x[NPARAMS];    doublereal *fvec;    doublereal  ftol = REL_SENSOR_TOLERANCE_ftol;    doublereal  xtol = REL_PARAM_TOLERANCE_xtol;    doublereal  gtol = ORTHO_TOLERANCE_gtol;    integer     maxfev = MAXFEV;    doublereal  epsfcn = EPSFCN;    doublereal  diag[NPARAMS];    integer     mode = MODE;    doublereal  factor = FACTOR;    integer     nprint = 0;    integer     info;    integer     nfev;    doublereal *fjac;    integer     ldfjac = m;    integer     ipvt[NPARAMS];    doublereal  qtf[NPARAMS];    doublereal  wa1[NPARAMS];    doublereal  wa2[NPARAMS];    doublereal  wa3[NPARAMS];    doublereal *wa4;    /* allocate some workspace */    if (( fvec = (doublereal *) calloc ((unsigned int) m, (unsigned int) sizeof(doublereal))) == NULL ) {       fprintf(stderr,"calloc: Cannot allocate workspace fvec\n");       exit(-1);    }    if (( fjac = (doublereal *) calloc ((unsigned int) m*n, (unsigned int) sizeof(doublereal))) == NULL ) {       fprintf(stderr,"calloc: Cannot allocate workspace fjac\n");       exit(-1);    }    if (( wa4 = (doublereal *) calloc ((unsigned int) m, (unsigned int) sizeof(doublereal))) == NULL ) {       fprintf(stderr,"calloc: Cannot allocate workspace wa4\n");       exit(-1);    }    /* use the current calibration constants as an initial guess */    x[0] = cc.f;    x[1] = cc.Tz;    x[2] = cc.kappa1;    /* define optional scale factors for the parameters */    if ( mode == 2 ) {        for (i = 0; i < NPARAMS; i++)            diag[i] = 1.0;             /* some user-defined values */    }     /* perform the optimization */    lmdif_ (ncc_compute_exact_f_and_Tz_error,            &m, &n, x, fvec, &ftol, &xtol, &gtol, &maxfev, &epsfcn,            diag, &mode, &factor, &nprint, &info, &nfev, fjac, &ldfjac,            ipvt, qtf, wa1, wa2, wa3, wa4);    /* update the calibration constants */    cc.f = x[0];    cc.Tz = x[1];    cc.kappa1 = x[2];    /* release allocated workspace */    free (fvec);    free (fjac);    free (wa4);#ifdef DEBUG    /* print the number of function calls during iteration */    fprintf(stderr,"info: %d nfev: %d\n\n",info,nfev);#endif#undef NPARAMS}/************************************************************************/void      ncc_three_parm_optimization (){    ncc_compute_Xd_Yd_and_r_squared ();    ncc_compute_U ();    ncc_compute_Tx_and_Ty ();    ncc_compute_sx ();    ncc_compute_Xd_Yd_and_r_squared ();    ncc_compute_better_R ();    ncc_compute_approximate_f_and_Tz ();    if (cc.f < 0) {	/* try the other solution for the orthonormal matrix */	cc.r3 = -cc.r3;	cc.r6 = -cc.r6;	cc.r7 = -cc.r7;	cc.r8 = -cc.r8;	solve_RPY_transform ();	ncc_compute_approximate_f_and_Tz ();        if (cc.f < 0) {            fprintf (stderr, "error - possible handedness problem with data\n");            exit (-1);	}    }    ncc_compute_exact_f_and_Tz ();}/************************************************************************/void      ncc_nic_optimization_error (m_ptr, n_ptr, params, err)    integer  *m_ptr;		/* pointer to number of points to fit */    integer  *n_ptr;		/* pointer to number of parameters */    doublereal *params;		/* vector of parameters */    doublereal *err;		/* vector of error from data */{    int       i;    double    xc,              yc,              zc,              Xd_,              Yd_,              Xu_1,              Yu_1,              Xu_2,              Yu_2,              distortion_factor,              Rx,              Ry,              Rz,              Tx,              Ty,              Tz,              kappa1,              sx,              f,              r1,              r2,              r3,              r4,              r5,              r6,              r7,              r8,              r9,              sa,              sb,              sg,              ca,              cb,              cg;    Rx = params[0];    Ry = params[1];    Rz = params[2];    Tx = params[3];    Ty = params[4];    Tz = params[5];    kappa1 = params[6];    f = params[7];    sx = params[8];    SINCOS (Rx, sa, ca);    SINCOS (Ry, sb, cb);    SINCOS (Rz, sg, cg);    r1 = cb * cg;    r2 = cg * sa * sb - ca * sg;    r3 = sa * sg + ca * cg * sb;    r4 = cb * sg;    r5 = sa * sb * sg + ca * cg;    r6 = ca * sb * sg - cg * sa;    r7 = -sb;    r8 = cb * sa;    r9 = ca * cb;    for (i = 0; i < cd.point_count; i++) {	/* convert from world coordinates to camera coordinates */	xc = r1 * cd.xw[i] + r2 * cd.yw[i] + r3 * cd.zw[i] + Tx;	yc = r4 * cd.xw[i] + r5 * cd.yw[i] + r6 * cd.zw[i] + Ty;	zc = r7 * cd.xw[i] + r8 * cd.yw[i] + r9 * cd.zw[i] + Tz;	/* convert from camera coordinates to undistorted sensor plane coordinates */	Xu_1 = f * xc / zc;	Yu_1 = f * yc / zc;	/* convert from 2D image coordinates to distorted sensor coordinates */	Xd_ = cp.dpx * (cd.Xf[i] - cp.Cx) / sx;	Yd_ = cp.dpy * (cd.Yf[i] - cp.Cy);	/* convert from distorted sensor coordinates to undistorted sensor plane coordinates */	distortion_factor = 1 + kappa1 * (SQR (Xd_) + SQR (Yd_));	Xu_2 = Xd_ * distortion_factor;	Yu_2 = Yd_ * distortion_factor;        /* record the error in the undistorted sensor coordinates */        err[i] = hypot (Xu_1 - Xu_2, Yu_1 - Yu_2);    }}void      ncc_nic_optimization (){#define NPARAMS 9    int       i;    /* Parameters needed by MINPACK's lmdif() */    integer     m = cd.point_count;    integer     n = NPARAMS;    doublereal  x[NPARAMS];    doublereal *fvec;    doublereal  ftol = REL_SENSOR_TOLERANCE_ftol;    doublereal  xtol = REL_PARAM_TOLERANCE_xtol;    doublereal  gtol = ORTHO_TOLERANCE_gtol;    integer     maxfev = MAXFEV;    doublereal  epsfcn = EPSFCN;    doublereal  diag[NPARAMS];    integer     mode = MODE;    doublereal  factor = FACTOR;    integer     nprint = 0;    integer     info;    integer     nfev;    doublereal *fjac;    integer     ldfjac = m;    integer     ipvt[NPARAMS];    doublereal  qtf[NPARAMS];    doublereal  wa1[NPARAMS];    doublereal  wa2[NPARAMS];    doublereal  wa3[NPARAMS];    doublereal *wa4;    /* allocate some workspace */    if (( fvec = (doublereal *) calloc ((unsigned int) m, (unsigned int) sizeof(doublereal))) == NULL ) {       fprintf(stderr,"calloc: Cannot allocate workspace fvec\n");       exit(-1);    }    if (( fjac = (doublereal *) calloc ((unsigned int) m*n, (unsigned int) sizeof(doublereal))) == NULL ) {       fprintf(stderr,"calloc: Cannot allocate workspace fjac\n");       exit(-1);    }    if (( wa4 = (doublereal *) calloc ((unsigned int) m, (unsigned int) sizeof(doublereal))) == NULL ) {       fprintf(stderr,"calloc: Cannot allocate workspace wa4\n");       exit(-1);    }    /* use the current calibration and camera constants as a starting point */    x[0] = cc.Rx;    x[1] = cc.Ry;    x[2] = cc.Rz;    x[3] = cc.Tx;    x[4] = cc.Ty;  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -