⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stats.c

📁 决策树是用二叉树形图来表示处理逻辑的一种工具。可以直观、清晰地表达加工的逻辑要求。特别适合于判断因素比较少、逻辑组合关系不复杂的情况。
💻 C
字号:
/*************************************************************************//*									 *//*  Statistical routines for C4.5					 *//*  -----------------------------					 *//*									 *//*************************************************************************/#include "defns.i"#include "types.i"#include "extern.i"									/*************************************************************************//*									 *//*  Compute the additional errors if the error rate increases to the	 *//*  upper limit of the confidence level.  The coefficient is the	 *//*  square of the number of standard deviations corresponding to the	 *//*  selected confidence level.  (Taken from Documenta Geigy Scientific	 *//*  Tables (Sixth Edition), p185 (with modifications).)			 *//*									 *//*************************************************************************/float Val[] = {  0,  0.001, 0.005, 0.01, 0.05, 0.10, 0.20, 0.40, 1.00},      Dev[] = {4.0,  3.09,  2.58,  2.33, 1.65, 1.28, 0.84, 0.25, 0.00};float AddErrs(N, e)/*    -------  */    ItemCount N, e;{    static float Coeff=0;    float Val0, Pr;    if ( ! Coeff )    {	/*  Compute and retain the coefficient value, interpolating from	    the values in Val and Dev  */	int i;	i = 0;	while ( CF > Val[i] ) i++;	Coeff = Dev[i-1] +		  (Dev[i] - Dev[i-1]) * (CF - Val[i-1]) /(Val[i] - Val[i-1]);	Coeff = Coeff * Coeff;    }    if ( e < 1E-6 )    {	return N * (1 - exp(log(CF) / N));    }    else    if ( e < 0.9999 )    {	Val0 = N * (1 - exp(log(CF) / N));	return Val0 + e * (AddErrs(N, 1.0) - Val0);    }    else    if ( e + 0.5 >= N )    {	return 0.67 * (N - e);    }    else    {	Pr = (e + 0.5 + Coeff/2	        + sqrt(Coeff * ((e + 0.5) * (1 - (e + 0.5)/N) + Coeff/4)) )             / (N + Coeff);	return (N * Pr - e);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -