📄 hbreg2.gss
字号:
*
* OUTPUT
* parmat = updated rankx x mvar coefficient matrix
* var = updated variance
* vari = updated inverse of sigma
*
* Calling Statement:
{parmat, var, vari} = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,f0n,g0i);
****************************************************************
*/
PROC (3) = getmulreg(yd,xd,xdtxd,parmat,var,vari,v0i,v0iu0,f0n,g0i);
local vb12, ubn, par, pdim, resid, gni, gn, rp, cp;
rp = rows(parmat);
cp = cols(parmat);
pdim = rp*cp;
/*
***********************************************************
* Generate parmat from N_{rp x cp}(M,v)
* par = vecr(parmat)
* par is N(u,V) whee u = vec(M');
* V = (Xd'Xd.*.Var^{-1} + V_0^{-1})^{-1}
* u = V*( (Xd'.*.Var^{-1})*vec(Yd') + V_0^{-1}u_0 )
*************************************************************
*/
vb12 = chol(xdtxd.*.vari + v0i);
ubn = ( (xd').*.vari )*vecr(yd) + v0iu0;
par = cholsol(ubn + vb12'rndn(pdim,1), vb12);
parmat = reshape(par,rp,cp);
/*
*********************************************************
* Generate Var
* Var^{-1} is Wishart df = f0n, scale matrix = gn
*********************************************************
*/
resid = yd - xd*parmat;
gni = g0i + resid'resid;
gn = invpd(gni);
{vari, var} = wishart(cp,f0n,gn);
retp(parmat,var,vari);
endp;
/*
*****************************************************************************************************
* OUTPUTANAL
* Does analysis of output and save some results
****************************************************************************************************
*/
PROC (0) = outputanal;
local bout, sout, ebeta, sbeta, cb, rmse, fmtn1, fmtn2, fmts1, fmts2, a, b,
betat, sigmat, thetat, lambdat, bratio ;
if flagtrue == 1; @ Did a simulation @
load betat = betat;
load sigmat = sigmat;
load thetat = thetat;
load lambdat = lambdat;
endif;
@ Define formats for fancy printing @
@ Used to print a matrix of alpha & numeric variables @
format 10,5; @ Default pring format @
let fmtn1[1,3] = "*.*lf" 10 5; @ Format for printing numeric variable @
let fmtn2[1,3] = "*.*lf" 10 0; @ Format for numeric variable, no decimal @
let fmts1[1,3] = "-*.*s" 10 9; @ Format for alpha, left justify @
let fmts2[1,3] = "*.*s" 10 9; @ Format for alpha, right justify @
output file = ^outfile reset; @ outfile is the file handle for the output file @
@ Route printed output to the defined by outfile @
print "Results from HBReg2.GSS";
print "Hierarchical Bayesian linear regression model using MCMC.";
print "Different design matrices for each subject";
print "Y_i = X_i*beta_i + epsilon_i";
print "beta_i = Theta'z_i + delta_i";
print "or";
print "B = Z*Theta + Delta";
print;
print "epsilon_i is N(0,sigma2*I)";
print "delta_i is N(0, Lambda)";
print;
print "Ouput file: " getpath(outfile); @ File assigned to file handle outfile @
datestr(date); @ Print the current data @
print;
print;
print "-----------------------------------------------------------------------------------";
print;
print "MCMC Analysis";
print;
print "Total number of MCMC iterations = " nmcmc;
print "Number of iterations used in the analysis = " smcmc;
print "Number in transition period = " nblow;
print "Number of iterations between saved iterations = " skip-1;
print;
print "Number of subjects = " nsub;
print "Mean # of observations per subject = " meanc(yrows);
print "STD # of observations per subject = " stdc(yrows);
print "MIN # of observations per subject = " minc(yrows);
print "MAX # of observations per subject = " maxc(yrows);
print "Total number of observations = " ntot;
print "Number of dependent variables X = " xdim " (excluding intercept)";
print "Number of dependent variables Z = " zdim " (excluding intercept)";
print;
print "Dependent variable is " $ynames;
print;
print "Independent variables in first level equation: Y_i = X_i*beta_i + epsilon_i";
print " Summary Statistics for X";
call sumstats(xnames,xdata,fmts1,fmts2,fmtn1);
print;
print "Independent variables in second level equation: beta_i = Theta*z_i + delta_i";
print " Summary Statistics for Z";
print sumstats(znames,zdata,fmts1,fmts2,fmtn1);
print;
print "-----------------------------------------------------------------------------------";
print;
print "Fit Statistics for ML";
print "Muptilpe R = " mlr;
print "R-Squared = " mlr^2;
print "Error STD DEV = " estdml;
print;
print "Fit Statistics for HB";
print "Muptilpe R = " hbr;
print "R-Squared = " hbr^2;
print "Error STD DEV = " estd;
print;
print "-----------------------------------------------------------------------------------";
print "Estimation of the error STD sigma";
if flagtrue == 1;
print "True Sigma = " sigmat;
endif;
print "MLE = " sighat;
print "Posterior Mean = " sigmam;
print "Posterior STD = " sigmas;
print;
print "-----------------------------------------------------------------------------------";
print;
print "ML Pooled Estimate of Beta";
bout = xnames~bpool;
call outmat(bout,fmts1,fmtn1);
print;
print "-----------------------------------------------------------------------------------";
print;
print "Statistics for Individual-Level Regression Coefficients";
if flagtrue == 1;
ebeta = meanc(betat);
sbeta = stdc(betat);
print "True Beta";
sout = {"Variable" "Mean" "STD"};
call outitle(sout,fmts1,fmts2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmts1,fmtn1);
endif;
print "MLE of Beta";
sout = {"Variable" "MeanMLE" "StdMLE" };
call outitle(sout,fmts1,fmts2);
bout = xnames~meanc(bhat)~stdc(bhat);
call outmat(bout,fmts1,fmtn1);
print "HB Estimates of Beta";
ebeta = meanc(betam);
sbeta = sqrt( meanc( (betas^2)) + stdc( betam)^2);
sout = {"Variable" "PostMean" "PostSTD" };
call outitle(sout,fmts1,fmts2);
bout = xnames~ebeta~sbeta;
call outmat(bout,fmts1,fmtn1);
print;
print;
print "Proportion of times that |Post Mean Beta|/(Post STD) > 2.";
bratio = betam./betas;
b = bratio .> 2;
bout = xnames~(meanc(b));
call outmat(bout,fmts1,fmtn1);
print;
print "-----------------------------------------------------------------------------------";
print;
if flagtrue == 1;
print "Comparison of True Beta to Individual Level Estimates";
for i0 (1,rankx,1); i = i0;
print "Component " i;
cb = corrx( betat[.,i]~betam[.,i] );
rmse = betat[.,i] - betam[.,i];
rmse = rmse'rmse;
rmse = sqrt(rmse/nsub);
print "Correlation between true and HB = " cb[1,2];
print "RMSE between true and HB = " rmse;
print;
cb = corrx( betat[.,i]~bhat[.,i] );
rmse = betat[.,i] - bhat[.,i];
rmse = rmse'rmse;
rmse = sqrt(rmse/nsub);
print "Correlation between true and MLE = " cb[1,2];
print "RMSE between true and MLE = " rmse;
print;
endfor;
endif;
print "-----------------------------------------------------------------------------------";
print;
print "HB Estimates of Theta";
sout = " "~(xnames');
if flagtrue == 1;
print "True Theta";
call outitle(sout,fmts1,fmts2);
bout = znames~thetat;
call outmat(bout,fmts1,fmtn1);
print;
endif;
print "Posterior Mean of Theta";
print outitle(sout,fmts1,fmts2);
bout = znames~thetam;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of Theta";
call outitle(sout,fmts1,fmts2);
bout = znames~thetas;
call outmat(bout,fmts1,fmtn1);
print;
print "Post Mean/Post STD";
print outitle(sout,fmts1,fmts2);
bout = znames~(thetam./thetas);
call outmat(bout,fmts1,fmtn1);
print;
print "-----------------------------------------------------------------------------------";
print;
sout = " "~(xnames');
print "HB Estimate of Lambda";
if flagtrue == 1;
print "True Lambda";
call outitle(sout,fmts1,fmts2);
bout = xnames~lambdat;
call outmat(bout,fmts1,fmtn1);
print;
endif;
print "Posterior Mean of Lambda";
call outitle(sout,fmts1,fmts2);
bout = xnames~lambdam;
call outmat(bout,fmts1,fmtn1);
print;
print "Posterior STD of Lambda";
call outitle(sout,fmts1,fmts2);
bout = xnames~lambdas;
call outmat(bout,fmts1,fmtn1);
print;
print "==============================================================================";
output off;
closeall;
endp;
/*
*****************************************************************************************
* OUTITLE
* Prints header for columns of numbers.
* INPUT
* a = character row vector of column names
* fmts1 = format for first column
* fmts2 = format for second column
* OUTPUT
* None
******************************************************************************************
*/
PROC (0) = outitle(a,fmt1,fmt2);
local mask, fmt, flag, ncols;
ncols = cols(a);
mask = zeros(1,ncols);
fmt = fmt1|(ones(ncols-1,1).*.fmt2);
flag = printfm(a,mask,fmt);
print;
endp;
/*
***************************************************************************************
* OUTMAT
* Outputs a matrix:
* (Character Vector)~(Numeric matrix);
* The entries in the numeric matrix have the same format
* INPUT
* bout = matrix to be printed
* fmts = format for string
* fmtn = format for numeric matrix
* OUTPUT
* None
******************************************************************************************
*/
PROC (0) = outmat(bout,fmts,fmtn);
local fmt,mask,flag,ncols, nrows;
ncols = cols(bout);
nrows = rows(bout);
fmt = fmts|(ones(ncols-1,1).*.fmtn);
mask = zeros(nrows,1)~ones(nrows,ncols-1);
flag = printfm(bout,mask,fmt);
print;
endp;
/*
*****************************************************************************************
* SUMSTATS
* Prints summary statistics for a data matrix
* INPUT
* names = charater vector of names
* data = data matrix
* fmts1 = format for string
* fmts2 = format for string
* fmtn = format for numbers
* OUTPUT
* None
********************************************************************************************
*/
PROC (0) = sumstats(names,data,fmts1,fmts2,fmtn);
local a, bout;
a = {"Variable" "Mean" "STD" "MIN" "MAX"};
call outitle(a,fmts1,fmts2);
bout = names~meanc(data)~stdc(data)~minc(data)~maxc(data);
call outmat(bout,fmts1,fmtn);
endp;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -