📄 adbst.h
字号:
// dbst.h
// binary search tree with duplicate values
#ifndef DBSTree_
#define DBSTree_
#include "dbinary.h"
#include "xcept.h"
template<class E, class K>
class DBSTree : public BinaryTree<E> {
public:
bool Search(const K& k, E& e) const;
bool FindGE(const K& k, K& Kout) const;
DBSTree<E,K>& Insert(const E& e);
DBSTree<E,K>& Delete(const K& k, E& e);
void Ascend() {InOutput();}
};
template<class E, class K>
bool DBSTree<E,K>::
Search(const K& k, E& e) const
{// Search for element that matches k.
// pointer p starts at the root and moves through
// the tree looking for an element with key k
BinaryTreeNode<E> *p = root;
while (p) {// examine p->data
if (k < p->data) p = p->LeftChild;
else if (k > p->data) p = p->RightChild;
else {// found element
e = p->data;
return true;}}
return false;
}
template<class E, class K>
DBSTree<E,K>& DBSTree<E,K>::Insert(const E& e)
{// Insert e.
BinaryTreeNode<E> *p = root, // search pointer
*pp = 0; // parent of p
// find place to insert
while (p) {// examine p->data
pp = p;
// move p to a child
if (e <= p->data) p = p->LeftChild;
else p = p->RightChild;
}
// get a node for e and attach to pp
BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);
if (root) {// tree not empty
if (e < pp->data) pp->LeftChild = r;
else pp->RightChild = r;}
else // insertion into empty tree
root = r;
return *this;
}
template<class E, class K>
DBSTree<E,K>& DBSTree<E,K>::
Delete(const K& k, E& e)
{// Delete element with key k and put it in e.
// set p to point to node with key k
BinaryTreeNode<E> *p = root, // search pointer
*pp = 0; // parent of p
while (p && p->data != k){// move to a child of p
pp = p;
if (k < p->data) p = p->LeftChild;
else p = p->RightChild;
}
if (!p) throw BadInput(); // no element with key k
e = p->data; // save element to delete
// restructure tree
// handle case when p has two children
if (p->LeftChild && p->RightChild) {// two children
// convert to zero or one child case
// find largest element in left subtree of p
BinaryTreeNode<E> *s = p->LeftChild,
*ps = p; // parent of s
while (s->RightChild) {// move to larger element
ps = s;
s = s->RightChild;}
// move largest from s to p
p->data = s->data;
p = s;
pp = ps;}
// p has at most one child
// save child pointer in c
BinaryTreeNode<E> *c;
if (p->LeftChild) c = p->LeftChild;
else c = p->RightChild;
// delete p
if (p == root) root = c;
else {// is p left or right child of pp?
if (p == pp->LeftChild)
pp->LeftChild = c;
else pp->RightChild = c;}
delete p;
return *this;
}
template<class E, class K>
bool DBSTree<E,K>::FindGE(const K& k, K& Kout) const
{// Find smallest element with value >= k.
BinaryTreeNode<E> *p = root, // search pointer
*s = 0; // pointer to smallest
// >= k found so far
// search the tree
while (p) {
// is p a candidate?
if (k <= p->data) {// yes
s = p; // p is a better candidate than s
// smaller elements in left subtree only
p = p->LeftChild;}
else // no, p->data too small, try right subtree
p = p->RightChild;
}
if (!s) return false; // not found
Kout = s->data;
return true;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -