📄 math::bigint.3
字号:
.\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05).\".\" Standard preamble:.\" ========================================================================.de Sh \" Subsection heading.br.if t .Sp.ne 5.PP\fB\\$1\fR.PP...de Sp \" Vertical space (when we can't use .PP).if t .sp .5v.if n .sp...de Vb \" Begin verbatim text.ft CW.nf.ne \\$1...de Ve \" End verbatim text.ft R.fi...\" Set up some character translations and predefined strings. \*(-- will.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left.\" double quote, and \*(R" will give a right double quote. \*(C+ will.\" give a nicer C++. Capital omega is used to do unbreakable dashes and.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,.\" nothing in troff, for use with C<>..tr \(*W-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'.ie n \{\. ds -- \(*W-. ds PI pi. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch. ds L" "". ds R" "". ds C` "". ds C' ""'br\}.el\{\. ds -- \|\(em\|. ds PI \(*p. ds L" ``. ds R" '''br\}.\".\" Escape single quotes in literal strings from groff's Unicode transform..ie \n(.g .ds Aq \(aq.el .ds Aq '.\".\" If the F register is turned on, we'll generate index entries on stderr for.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index.\" entries marked with X<> in POD. Of course, you'll have to process the.\" output yourself in some meaningful fashion..ie \nF \{\. de IX. tm Index:\\$1\t\\n%\t"\\$2"... nr % 0. rr F.\}.el \{\. de IX...\}.\".\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2)..\" Fear. Run. Save yourself. No user-serviceable parts.. \" fudge factors for nroff and troff.if n \{\. ds #H 0. ds #V .8m. ds #F .3m. ds #[ \f1. ds #] \fP.\}.if t \{\. ds #H ((1u-(\\\\n(.fu%2u))*.13m). ds #V .6m. ds #F 0. ds #[ \&. ds #] \&.\}. \" simple accents for nroff and troff.if n \{\. ds ' \&. ds ` \&. ds ^ \&. ds , \&. ds ~ ~. ds /.\}.if t \{\. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u". ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'.\}. \" troff and (daisy-wheel) nroff accents.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'.ds 8 \h'\*(#H'\(*b\h'-\*(#H'.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#].ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#].ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#].ds ae a\h'-(\w'a'u*4/10)'e.ds Ae A\h'-(\w'A'u*4/10)'E. \" corrections for vroff.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'. \" for low resolution devices (crt and lpr).if \n(.H>23 .if \n(.V>19 \\{\. ds : e. ds 8 ss. ds o a. ds d- d\h'-1'\(ga. ds D- D\h'-1'\(hy. ds th \o'bp'. ds Th \o'LP'. ds ae ae. ds Ae AE.\}.rm #[ #] #H #V #F C.\" ========================================================================.\".IX Title "Math::BigInt 3".TH Math::BigInt 3 "2007-12-18" "perl v5.10.0" "Perl Programmers Reference Guide".\" For nroff, turn off justification. Always turn off hyphenation; it makes.\" way too many mistakes in technical documents..if n .ad l.nh.SH "NAME"Math::BigInt \- Arbitrary size integer/float math package.SH "SYNOPSIS".IX Header "SYNOPSIS".Vb 1\& use Math::BigInt;\&\& # or make it faster: install (optional) Math::BigInt::GMP\& # and always use (it will fall back to pure Perl if the\& # GMP library is not installed):\&\& # will warn if Math::BigInt::GMP cannot be found\& use Math::BigInt lib => \*(AqGMP\*(Aq;\&\& # to supress the warning use this:\& # use Math::BigInt try => \*(AqGMP\*(Aq;\&\& my $str = \*(Aq1234567890\*(Aq;\& my @values = (64,74,18);\& my $n = 1; my $sign = \*(Aq\-\*(Aq;\&\& # Number creation \& my $x = Math::BigInt\->new($str); # defaults to 0\& my $y = $x\->copy(); # make a true copy\& my $nan = Math::BigInt\->bnan(); # create a NotANumber\& my $zero = Math::BigInt\->bzero(); # create a +0\& my $inf = Math::BigInt\->binf(); # create a +inf\& my $inf = Math::BigInt\->binf(\*(Aq\-\*(Aq); # create a \-inf\& my $one = Math::BigInt\->bone(); # create a +1\& my $mone = Math::BigInt\->bone(\*(Aq\-\*(Aq); # create a \-1\&\& my $pi = Math::BigInt\->bpi(); # returns \*(Aq3\*(Aq\& # see Math::BigFloat::bpi()\&\& $h = Math::BigInt\->new(\*(Aq0x123\*(Aq); # from hexadecimal\& $b = Math::BigInt\->new(\*(Aq0b101\*(Aq); # from binary\& $o = Math::BigInt\->from_oct(\*(Aq0101\*(Aq); # from octal\&\& # Testing (don\*(Aqt modify their arguments)\& # (return true if the condition is met, otherwise false)\&\& $x\->is_zero(); # if $x is +0\& $x\->is_nan(); # if $x is NaN\& $x\->is_one(); # if $x is +1\& $x\->is_one(\*(Aq\-\*(Aq); # if $x is \-1\& $x\->is_odd(); # if $x is odd\& $x\->is_even(); # if $x is even\& $x\->is_pos(); # if $x >= 0\& $x\->is_neg(); # if $x < 0\& $x\->is_inf($sign); # if $x is +inf, or \-inf (sign is default \*(Aq+\*(Aq)\& $x\->is_int(); # if $x is an integer (not a float)\&\& # comparing and digit/sign extraction\& $x\->bcmp($y); # compare numbers (undef,<0,=0,>0)\& $x\->bacmp($y); # compare absolutely (undef,<0,=0,>0)\& $x\->sign(); # return the sign, either +,\- or NaN\& $x\->digit($n); # return the nth digit, counting from right\& $x\->digit(\-$n); # return the nth digit, counting from left\&\& # The following all modify their first argument. If you want to preserve\& # $x, use $z = $x\->copy()\->bXXX($y); See under L<CAVEATS> for why this is\& # necessary when mixing $a = $b assignments with non\-overloaded math.\&\& $x\->bzero(); # set $x to 0\& $x\->bnan(); # set $x to NaN\& $x\->bone(); # set $x to +1\& $x\->bone(\*(Aq\-\*(Aq); # set $x to \-1\& $x\->binf(); # set $x to inf\& $x\->binf(\*(Aq\-\*(Aq); # set $x to \-inf\&\& $x\->bneg(); # negation\& $x\->babs(); # absolute value\& $x\->bnorm(); # normalize (no\-op in BigInt)\& $x\->bnot(); # two\*(Aqs complement (bit wise not)\& $x\->binc(); # increment $x by 1\& $x\->bdec(); # decrement $x by 1\& \& $x\->badd($y); # addition (add $y to $x)\& $x\->bsub($y); # subtraction (subtract $y from $x)\& $x\->bmul($y); # multiplication (multiply $x by $y)\& $x\->bdiv($y); # divide, set $x to quotient\& # return (quo,rem) or quo if scalar\&\& $x\->bmuladd($y,$z); # $x = $x * $y + $z\&\& $x\->bmod($y); # modulus (x % y)\& $x\->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))\& $x\->bmodinv($mod); # the inverse of $x in the given modulus $mod\&\& $x\->bpow($y); # power of arguments (x ** y)\& $x\->blsft($y); # left shift in base 2\& $x\->brsft($y); # right shift in base 2\& # returns (quo,rem) or quo if in scalar context\& $x\->blsft($y,$n); # left shift by $y places in base $n\& $x\->brsft($y,$n); # right shift by $y places in base $n\& # returns (quo,rem) or quo if in scalar context\& \& $x\->band($y); # bitwise and\& $x\->bior($y); # bitwise inclusive or\& $x\->bxor($y); # bitwise exclusive or\& $x\->bnot(); # bitwise not (two\*(Aqs complement)\&\& $x\->bsqrt(); # calculate square\-root\& $x\->broot($y); # $y\*(Aqth root of $x (e.g. $y == 3 => cubic root)\& $x\->bfac(); # factorial of $x (1*2*3*4*..$x)\&\& $x\->bnok($y); # x over y (binomial coefficient n over k)\&\& $x\->blog(); # logarithm of $x to base e (Euler\*(Aqs number)\& $x\->blog($base); # logarithm of $x to base $base (f.i. 2)\& $x\->bexp(); # calculate e ** $x where e is Euler\*(Aqs number\& \& $x\->round($A,$P,$mode); # round to accuracy or precision using mode $mode\& $x\->bround($n); # accuracy: preserve $n digits\& $x\->bfround($n); # $n > 0: round $nth digits,\& # $n < 0: round to the $nth digit after the\& # dot, no\-op for BigInts\&\& # The following do not modify their arguments in BigInt (are no\-ops),\& # but do so in BigFloat:\&\& $x\->bfloor(); # return integer less or equal than $x\& $x\->bceil(); # return integer greater or equal than $x\& \& # The following do not modify their arguments:\&\& # greatest common divisor (no OO style)\& my $gcd = Math::BigInt::bgcd(@values);\& # lowest common multiplicator (no OO style)\& my $lcm = Math::BigInt::blcm(@values); \& \& $x\->length(); # return number of digits in number\& ($xl,$f) = $x\->length(); # length of number and length of fraction part,\& # latter is always 0 digits long for BigInts\&\& $x\->exponent(); # return exponent as BigInt\& $x\->mantissa(); # return (signed) mantissa as BigInt\& $x\->parts(); # return (mantissa,exponent) as BigInt\& $x\->copy(); # make a true copy of $x (unlike $y = $x;)\& $x\->as_int(); # return as BigInt (in BigInt: same as copy())\& $x\->numify(); # return as scalar (might overflow!)\& \& # conversation to string (do not modify their argument)\& $x\->bstr(); # normalized string (e.g. \*(Aq3\*(Aq)\& $x\->bsstr(); # norm. string in scientific notation (e.g. \*(Aq3E0\*(Aq)\& $x\->as_hex(); # as signed hexadecimal string with prefixed 0x\& $x\->as_bin(); # as signed binary string with prefixed 0b\& $x\->as_oct(); # as signed octal string with prefixed 0\&\&\& # precision and accuracy (see section about rounding for more)\& $x\->precision(); # return P of $x (or global, if P of $x undef)\& $x\->precision($n); # set P of $x to $n\& $x\->accuracy(); # return A of $x (or global, if A of $x undef)\& $x\->accuracy($n); # set A $x to $n\&\& # Global methods\& Math::BigInt\->precision(); # get/set global P for all BigInt objects\& Math::BigInt\->accuracy(); # get/set global A for all BigInt objects\& Math::BigInt\->round_mode(); # get/set global round mode, one of\& # \*(Aqeven\*(Aq, \*(Aqodd\*(Aq, \*(Aq+inf\*(Aq, \*(Aq\-inf\*(Aq, \*(Aqzero\*(Aq, \*(Aqtrunc\*(Aq or \*(Aqcommon\*(Aq\& Math::BigInt\->config(); # return hash containing configuration.Ve.SH "DESCRIPTION".IX Header "DESCRIPTION"All operators (including basic math operations) are overloaded if youdeclare your big integers as.PP.Vb 1\& $i = new Math::BigInt \*(Aq123_456_789_123_456_789\*(Aq;.Ve.PPOperations with overloaded operators preserve the arguments which isexactly what you expect..IP "Input" 2.IX Item "Input"Input values to these routines may be any string, that looks like a numberand results in an integer, including hexadecimal and binary numbers..SpScalars holding numbers may also be passed, but note that non-integer numbersmay already have lost precision due to the conversation to float. Quoteyour input if you want BigInt to see all the digits:.Sp.Vb 2\& $x = Math::BigInt\->new(12345678890123456789); # bad\& $x = Math::BigInt\->new(\*(Aq12345678901234567890\*(Aq); # good.Ve.SpYou can include one underscore between any two digits..SpThis means integer values like 1.01E2 or even 1000E\-2 are also accepted.Non-integer values result in NaN..SpHexadecimal (prefixed with \*(L"0x\*(R") and binary numbers (prefixed with \*(L"0b\*(R")are accepted, too. Please note that octal numbers are not recognizedby \fInew()\fR, so the following will print \*(L"123\*(R":.Sp.Vb 1\& perl \-MMath::BigInt \-le \*(Aqprint Math::BigInt\->new("0123")\*(Aq.Ve.SpTo convert an octal number, use \fIfrom_oct()\fR;.Sp.Vb 1\& perl \-MMath::BigInt \-le \*(Aqprint Math::BigInt\->from_oct("0123")\*(Aq.Ve.SpCurrently, \fIMath::BigInt::new()\fR defaults to 0, while Math::BigInt::new('')results in 'NaN'. This might change in the future, so use always the followingexplicit forms to get a zero or NaN:.Sp.Vb 2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -