⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex.pm

📁 视频监控网络部分的协议ddns,的模块的实现代码,请大家大胆指正.
💻 PM
📖 第 1 页 / 共 4 页
字号:
#sub atan {	my ($z) = @_;	return CORE::atan2($z, 1) unless ref $z;	my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);	return 0 if $x == 0 && $y == 0;	_divbyzero "atan(i)"  if ( $z == i);	_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...	my $log = &log((i + $z) / (i - $z));	return _ip2 * $log;}## asec## Computes the arc secant asec(z) = acos(1 / z).#sub asec {	my ($z) = @_;	_divbyzero "asec($z)", $z if ($z == 0);	return acos(1 / $z);}## acsc## Computes the arc cosecant acsc(z) = asin(1 / z).#sub acsc {	my ($z) = @_;	_divbyzero "acsc($z)", $z if ($z == 0);	return asin(1 / $z);}## acosec## Alias for acsc().#sub acosec { Math::Complex::acsc(@_) }## acot## Computes the arc cotangent acot(z) = atan(1 / z)#sub acot {	my ($z) = @_;	_divbyzero "acot(0)"  if $z == 0;	return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)	    unless ref $z;	_divbyzero "acot(i)"  if ($z - i == 0);	_logofzero "acot(-i)" if ($z + i == 0);	return atan(1 / $z);}## acotan## Alias for acot().#sub acotan { Math::Complex::acot(@_) }## cosh## Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.#sub cosh {	my ($z) = @_;	my $ex;	unless (ref $z) {	    $ex = CORE::exp($z);	    return $ex ? ($ex + 1/$ex)/2 : $Inf;	}	my ($x, $y) = @{$z->_cartesian};	$ex = CORE::exp($x);	my $ex_1 = $ex ? 1 / $ex : $Inf;	return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,			      CORE::sin($y) * ($ex - $ex_1)/2);}## sinh## Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.#sub sinh {	my ($z) = @_;	my $ex;	unless (ref $z) {	    return 0 if $z == 0;	    $ex = CORE::exp($z);	    return $ex ? ($ex - 1/$ex)/2 : "-$Inf";	}	my ($x, $y) = @{$z->_cartesian};	my $cy = CORE::cos($y);	my $sy = CORE::sin($y);	$ex = CORE::exp($x);	my $ex_1 = $ex ? 1 / $ex : $Inf;	return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,			      CORE::sin($y) * ($ex + $ex_1)/2);}## tanh## Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).#sub tanh {	my ($z) = @_;	my $cz = cosh($z);	_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);	return sinh($z) / $cz;}## sech## Computes the hyperbolic secant sech(z) = 1 / cosh(z).#sub sech {	my ($z) = @_;	my $cz = cosh($z);	_divbyzero "sech($z)", "cosh($z)" if ($cz == 0);	return 1 / $cz;}## csch## Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).#sub csch {	my ($z) = @_;	my $sz = sinh($z);	_divbyzero "csch($z)", "sinh($z)" if ($sz == 0);	return 1 / $sz;}## cosech## Alias for csch().#sub cosech { Math::Complex::csch(@_) }## coth## Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).#sub coth {	my ($z) = @_;	my $sz = sinh($z);	_divbyzero "coth($z)", "sinh($z)" if $sz == 0;	return cosh($z) / $sz;}## cotanh## Alias for coth().#sub cotanh { Math::Complex::coth(@_) }## acosh## Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).#sub acosh {	my ($z) = @_;	unless (ref $z) {	    $z = cplx($z, 0);	}	my ($re, $im) = @{$z->_cartesian};	if ($im == 0) {	    return CORE::log($re + CORE::sqrt($re*$re - 1))		if $re >= 1;	    return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))		if CORE::abs($re) < 1;	}	my $t = &sqrt($z * $z - 1) + $z;	# Try Taylor if looking bad (this usually means that	# $z was large negative, therefore the sqrt is really	# close to abs(z), summing that with z...)	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)	    if $t == 0;	my $u = &log($t);	$u->Im(-$u->Im) if $re < 0 && $im == 0;	return $re < 0 ? -$u : $u;}## asinh## Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))#sub asinh {	my ($z) = @_;	unless (ref $z) {	    my $t = $z + CORE::sqrt($z*$z + 1);	    return CORE::log($t) if $t;	}	my $t = &sqrt($z * $z + 1) + $z;	# Try Taylor if looking bad (this usually means that	# $z was large negative, therefore the sqrt is really	# close to abs(z), summing that with z...)	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)	    if $t == 0;	return &log($t);}## atanh## Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).#sub atanh {	my ($z) = @_;	unless (ref $z) {	    return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;	    $z = cplx($z, 0);	}	_divbyzero 'atanh(1)',  "1 - $z" if (1 - $z == 0);	_logofzero 'atanh(-1)'           if (1 + $z == 0);	return 0.5 * &log((1 + $z) / (1 - $z));}## asech## Computes the hyperbolic arc secant asech(z) = acosh(1 / z).#sub asech {	my ($z) = @_;	_divbyzero 'asech(0)', "$z" if ($z == 0);	return acosh(1 / $z);}## acsch## Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z).#sub acsch {	my ($z) = @_;	_divbyzero 'acsch(0)', $z if ($z == 0);	return asinh(1 / $z);}## acosech## Alias for acosh().#sub acosech { Math::Complex::acsch(@_) }## acoth## Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).#sub acoth {	my ($z) = @_;	_divbyzero 'acoth(0)'            if ($z == 0);	unless (ref $z) {	    return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;	    $z = cplx($z, 0);	}	_divbyzero 'acoth(1)',  "$z - 1" if ($z - 1 == 0);	_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);	return &log((1 + $z) / ($z - 1)) / 2;}## acotanh## Alias for acot().#sub acotanh { Math::Complex::acoth(@_) }## (atan2)## Compute atan(z1/z2), minding the right quadrant.#sub atan2 {	my ($z1, $z2, $inverted) = @_;	my ($re1, $im1, $re2, $im2);	if ($inverted) {	    ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);	    ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);	} else {	    ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);	    ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);	}	if ($im1 || $im2) {	    # In MATLAB the imaginary parts are ignored.	    # warn "atan2: Imaginary parts ignored";	    # http://documents.wolfram.com/mathematica/functions/ArcTan	    # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)	    my $s = $z1 * $z1 + $z2 * $z2;	    _divbyzero("atan2") if $s == 0;	    my $i = &i;	    my $r = $z2 + $z1 * $i;	    return -$i * &log($r / &sqrt( $s ));	}	return CORE::atan2($re1, $re2);}## display_format# ->display_format## Set (get if no argument) the display format for all complex numbers that# don't happen to have overridden it via ->display_format## When called as an object method, this actually sets the display format for# the current object.## Valid object formats are 'c' and 'p' for cartesian and polar. The first# letter is used actually, so the type can be fully spelled out for clarity.#sub display_format {	my $self  = shift;	my %display_format = %DISPLAY_FORMAT;	if (ref $self) {			# Called as an object method	    if (exists $self->{display_format}) {		my %obj = %{$self->{display_format}};		@display_format{keys %obj} = values %obj;	    }	}	if (@_ == 1) {	    $display_format{style} = shift;	} else {	    my %new = @_;	    @display_format{keys %new} = values %new;	}	if (ref $self) { # Called as an object method	    $self->{display_format} = { %display_format };	    return		wantarray ?		    %{$self->{display_format}} :		    $self->{display_format}->{style};	}        # Called as a class method	%DISPLAY_FORMAT = %display_format;	return	    wantarray ?		%DISPLAY_FORMAT :		    $DISPLAY_FORMAT{style};}## (_stringify)## Show nicely formatted complex number under its cartesian or polar form,# depending on the current display format:## . If a specific display format has been recorded for this object, use it.# . Otherwise, use the generic current default for all complex numbers,#   which is a package global variable.#sub _stringify {	my ($z) = shift;	my $style = $z->display_format;	$style = $DISPLAY_FORMAT{style} unless defined $style;	return $z->_stringify_polar if $style =~ /^p/i;	return $z->_stringify_cartesian;}## ->_stringify_cartesian## Stringify as a cartesian representation 'a+bi'.#sub _stringify_cartesian {	my $z  = shift;	my ($x, $y) = @{$z->_cartesian};	my ($re, $im);	my %format = $z->display_format;	my $format = $format{format};	if ($x) {	    if ($x =~ /^NaN[QS]?$/i) {		$re = $x;	    } else {		if ($x =~ /^-?$Inf$/oi) {		    $re = $x;		} else {		    $re = defined $format ? sprintf($format, $x) : $x;		}	    }	} else {	    undef $re;	}	if ($y) {	    if ($y =~ /^(NaN[QS]?)$/i) {		$im = $y;	    } else {		if ($y =~ /^-?$Inf$/oi) {		    $im = $y;		} else {		    $im =			defined $format ?			    sprintf($format, $y) :			    ($y == 1 ? "" : ($y == -1 ? "-" : $y));		}	    }	    $im .= "i";	} else {	    undef $im;	}	my $str = $re;	if (defined $im) {	    if ($y < 0) {		$str .= $im;	    } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i)  {		$str .= "+" if defined $re;		$str .= $im;	    }	} elsif (!defined $re) {	    $str = "0";	}	return $str;}## ->_stringify_polar## Stringify as a polar representation '[r,t]'.#sub _stringify_polar {	my $z  = shift;	my ($r, $t) = @{$z->_polar};	my $theta;	my %format = $z->display_format;	my $format = $format{format};	if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) {	    $theta = $t; 	} elsif ($t == pi) {	    $theta = "pi";	} elsif ($r == 0 || $t == 0) {	    $theta = defined $format ? sprintf($format, $t) : $t;	}	return "[$r,$theta]" if defined $theta;	#	# Try to identify pi/n and friends.	#	$t -= int(CORE::abs($t) / pi2) * pi2;	if ($format{polar_pretty_print} && $t) {	    my ($a, $b);	    for $a (2..9) {		$b = $t * $a / pi;		if ($b =~ /^-?\d+$/) {		    $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;		    $theta = "${b}pi/$a";		    last;		}	    }	}        if (defined $format) {	    $r     = sprintf($format, $r);	    $theta = sprintf($format, $theta) unless defined $theta;	} else {	    $theta = $t unless defined $theta;	}	return "[$r,$theta]";}1;__END__=pod=head1 NAME

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -