📄 bayesnetgenerator.java
字号:
int nMaxParentCardinality = 1;
for (int iAttribute = 0; iAttribute < nNodes; iAttribute++) {
if (m_ParentSets[iAttribute].getCardinalityOfParents() > nMaxParentCardinality) {
nMaxParentCardinality = m_ParentSets[iAttribute].getCardinalityOfParents();
}
}
// Reserve plenty of memory
m_Distributions = new Estimator[m_Instances.numAttributes()][nMaxParentCardinality];
// estimate CPTs
for (int iAttribute = 0; iAttribute < nNodes; iAttribute++) {
int [] nPs = new int [nValues + 1];
nPs[0] = 0;
nPs[nValues] = 1000;
for (int iParent = 0; iParent < m_ParentSets[iAttribute].getCardinalityOfParents(); iParent++) {
// fill array with random nr's
for (int iValue = 1; iValue < nValues; iValue++) {
nPs[iValue] = random.nextInt(1000);
}
// sort
for (int iValue = 1; iValue < nValues; iValue++) {
for (int iValue2 = iValue + 1; iValue2 < nValues; iValue2++) {
if (nPs[iValue2] < nPs[iValue]) {
int h = nPs[iValue2]; nPs[iValue2] = nPs[iValue]; nPs[iValue] = h;
}
}
}
// assign to probability tables
DiscreteEstimatorBayes d = new DiscreteEstimatorBayes(nValues, getEstimator().getAlpha());
for (int iValue = 0; iValue < nValues; iValue++) {
d.addValue(iValue, nPs[iValue + 1] - nPs[iValue]);
}
m_Distributions[iAttribute][iParent] = d;
}
}
} // GenerateRandomDistributions
/* GenerateInstances generates random instances sampling from the
* distribution represented by the Bayes network structure. It assumes
* a Bayes network structure has been initialized
* @param nInstances: nr of isntances to generate
*/
public void generateInstances(){
for (int iInstance = 0; iInstance < m_nNrOfInstances; iInstance++) {
int nNrOfAtts = m_Instances.numAttributes();
Instance instance = new Instance(nNrOfAtts);
instance.setDataset(m_Instances);
for (int iAtt = 0; iAtt < nNrOfAtts; iAtt++) {
double iCPT = 0;
for (int iParent = 0; iParent < m_ParentSets[iAtt].getNrOfParents(); iParent++) {
int nParent = m_ParentSets[iAtt].getParent(iParent);
iCPT = iCPT * m_Instances.attribute(nParent).numValues() + instance.value(nParent);
}
double fRandom = random.nextInt(1000) / 1000.0f;
int iValue = 0;
while (fRandom > m_Distributions[iAtt][(int) iCPT].getProbability(iValue)) {
fRandom = fRandom - m_Distributions[iAtt][(int) iCPT].getProbability(iValue);
iValue++ ;
}
instance.setValue(iAtt, iValue);
}
m_Instances.add(instance);
}
} // GenerateInstances
public String toString() {
if (m_bGenerateNet) {
return toXMLBIF03();
}
StringBuffer text = new StringBuffer();
return m_Instances.toString();
} // toString
boolean m_bGenerateNet = false;
int m_nNrOfNodes = 10;
int m_nNrOfArcs = 10;
int m_nNrOfInstances = 10;
int m_nCardinality = 2;
String m_sBIFFile = "";
void setNrOfNodes(int nNrOfNodes) {m_nNrOfNodes = nNrOfNodes;}
void setNrOfArcs(int nNrOfArcs) {m_nNrOfArcs = nNrOfArcs;}
void setNrOfInstances(int nNrOfInstances) {m_nNrOfInstances = nNrOfInstances;}
void setCardinality(int nCardinality) {m_nCardinality = nCardinality;}
void setSeed(int nSeed) {m_nSeed = nSeed;}
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Vector newVector = new Vector(6);
newVector.addElement(new Option("\tGenerate network (instead of instances)\n", "B", 0, "-B"));
newVector.addElement(new Option("\tNr of nodes\n", "N", 1, "-N <integer>"));
newVector.addElement(new Option("\tNr of arcs\n", "A", 1, "-A <integer>"));
newVector.addElement(new Option("\tNr of instances\n", "I", 1, "-I <integer>"));
newVector.addElement(new Option("\tCardinality of the variables\n", "C", 1, "-C <integer>"));
newVector.addElement(new Option("\tSeed for random number generator\n", "S", 1, "-S <integer>"));
return newVector.elements();
} // listOptions
/**
* Parses a given list of options. Valid options are:<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
m_bGenerateNet = Utils.getFlag('B', options);
String sNrOfNodes = Utils.getOption('N', options);
if (sNrOfNodes.length() != 0) {
setNrOfNodes(Integer.parseInt(sNrOfNodes));
} else {
setNrOfNodes(10);
}
String sNrOfArcs = Utils.getOption('A', options);
if (sNrOfArcs.length() != 0) {
setNrOfArcs(Integer.parseInt(sNrOfArcs));
} else {
setNrOfArcs(10);
}
String sNrOfInstances = Utils.getOption('M', options);
if (sNrOfInstances.length() != 0) {
setNrOfInstances(Integer.parseInt(sNrOfInstances));
} else {
setNrOfInstances(10);
}
String sCardinality = Utils.getOption('C', options);
if (sCardinality.length() != 0) {
setCardinality(Integer.parseInt(sCardinality));
} else {
setCardinality(2);
}
String sSeed = Utils.getOption('S', options);
if (sSeed.length() != 0) {
setSeed(Integer.parseInt(sSeed));
} else {
setSeed(1);
}
String sBIFFile = Utils.getOption('F', options);
if ((sBIFFile != null) && (sBIFFile != "")) {
setBIFFile(sBIFFile);
}
} // setOptions
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String[] options = new String[13];
int current = 0;
if (!m_bGenerateNet) {
options[current++] = "-B";
}
options[current++] = "-N";
options[current++] = "" + m_nNrOfNodes;
options[current++] = "-A";
options[current++] = "" + m_nNrOfArcs;
options[current++] = "-M";
options[current++] = "" + m_nNrOfInstances;
options[current++] = "-C";
options[current++] = "" + m_nCardinality;
options[current++] = "-S";
options[current++] = "" + m_nSeed;
options[current++] = "-F";
options[current++] = "" + m_sBIFFile;
// Fill up rest with empty strings, not nulls!
while (current < options.length) {
options[current++] = "";
}
return options;
} // getOptions
static public void main(String [] Argv) {
BayesNetGenerator b = new BayesNetGenerator();
if (Argv.length == 0) {
System.err.println(b.listOptions().toString());
return;
}
try {
b.setOptions(Argv);
b.generateRandomNetwork();
if (!b.m_bGenerateNet) { // skip if not required
b.generateInstances();
}
System.out.println(b.toString());
} catch (Exception e) {
e.printStackTrace();
System.err.println(b.listOptions().toString());
}
} // main
} // class BayesNetGenerator
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -