⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 residualmodelselection.java

📁 为了下东西 随便发了个 datamining 的源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ResidualModelSelection.java
 *    Copyright (C) 2003 Niels Landwehr
 *
 */

package weka.classifiers.trees.lmt;

import weka.classifiers.trees.j48.ClassifierSplitModel;
import weka.classifiers.trees.j48.Distribution;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.j48.NoSplit;
import weka.core.Instances;

/**
 * Helper class for logistic model trees (weka.classifiers.trees.lmt.LMT) to implement the 
 * splitting criterion based on residuals.
 * 
 * @author Niels Landwehr
 * @version $Revision$
 */

public class ResidualModelSelection extends ModelSelection {

    /** Minimum number of instances for leaves*/
    protected int m_minNumInstances;
   
    /** Minimum information gain for split*/
    protected double m_minInfoGain;    
    
    /**
     * Constructor to create ResidualModelSelection object. 
     * @param minNumInstances minimum number of instances for leaves
     */
    public ResidualModelSelection(int minNumInstances) {
	m_minNumInstances = minNumInstances;
	m_minInfoGain = 1.0E-4;
    }
    
    /**Method not in use*/
    public void cleanup() {
	//method not in use
    }
    
    /**
     * Selects split based on residuals for the given dataset.
     */
    public final ClassifierSplitModel selectModel(Instances data, 
						  double[][] dataZs, double[][] dataWs) throws Exception{
	
	int numAttributes = data.numAttributes();
	
	if (numAttributes < 2) throw new Exception("Can't select Model without non-class attribute");
	if (data.numInstances() < m_minNumInstances) return new NoSplit(new Distribution(data));
	

        double bestGain = -Double.MAX_VALUE;
	int bestAttribute = -1;

	//try split on every attribute
	for (int i = 0; i < numAttributes; i++) {
	    if (i != data.classIndex()) {
		
		//build split
		ResidualSplit split = new ResidualSplit(i);	    
		split.buildClassifier(data, dataZs, dataWs);
		
		if (split.checkModel(m_minNumInstances)){
		    
		    //evaluate split 
		    double gain = split.entropyGain();	
		    if (gain > bestGain) {
			bestGain = gain;
			bestAttribute = i;
		    }
		}
	    }    	    
	}     

	if (bestGain >= m_minInfoGain){
 	    //return best split
	    ResidualSplit split = new ResidualSplit(bestAttribute);
	    split.buildClassifier(data, dataZs, dataWs);	
	    return split;	    
	} else {	    
	    //could not find any split with enough information gain
	    return new NoSplit(new Distribution(data));	    
	}
    }

    /**Method not in use*/
    public final ClassifierSplitModel selectModel(Instances train) {
	//method not in use
	return null;
    }

    /**Method not in use*/
    public final ClassifierSplitModel selectModel(Instances train, Instances test) {
	//method not in use
	return null;
    }
}













⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -