📄 entity-mib
字号:
ENTITY-MIB DEFINITIONS ::= BEGINIMPORTS MODULE-IDENTITY, OBJECT-TYPE, mib-2, NOTIFICATION-TYPE FROM SNMPv2-SMI TDomain, TAddress, TEXTUAL-CONVENTION, AutonomousType, RowPointer, TimeStamp, TruthValue FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF SnmpAdminString FROM SNMP-FRAMEWORK-MIB;entityMIB MODULE-IDENTITY LAST-UPDATED "9912070000Z" -- December 7, 1999 ORGANIZATION "IETF ENTMIB Working Group" CONTACT-INFO " WG E-mail: entmib@cisco.com Subscribe: majordomo@cisco.com msg body: subscribe entmib Keith McCloghrie ENTMIB Working Group Chair Cisco Systems Inc. 170 West Tasman Drive San Jose, CA 95134 +1 408-526-5260 kzm@cisco.com Andy Bierman ENTMIB Working Group Editor Cisco Systems Inc. 170 West Tasman Drive San Jose, CA 95134 +1 408-527-3711 abierman@cisco.com" DESCRIPTION "The MIB module for representing multiple logical entities supported by a single SNMP agent." REVISION "9912070000Z" DESCRIPTION "Initial Version of Entity MIB (Version 2). This revision obsoletes RFC 2037. This version published as RFC 2737." REVISION "9610310000Z" DESCRIPTION "Initial version (version 1), published as RFC 2037." ::= { mib-2 47 }entityMIBObjects OBJECT IDENTIFIER ::= { entityMIB 1 }-- MIB contains four groupsentityPhysical OBJECT IDENTIFIER ::= { entityMIBObjects 1 }entityLogical OBJECT IDENTIFIER ::= { entityMIBObjects 2 }entityMapping OBJECT IDENTIFIER ::= { entityMIBObjects 3 }entityGeneral OBJECT IDENTIFIER ::= { entityMIBObjects 4 }-- Textual ConventionsPhysicalIndex ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An arbitrary value which uniquely identifies the physical entity. The value should be a small positive integer; index values for different physical entities are not necessarily contiguous." SYNTAX INTEGER (1..2147483647)PhysicalClass ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An enumerated value which provides an indication of the general hardware type of a particular physical entity. There are no restrictions as to the number of entPhysicalEntries of each entPhysicalClass, which must be instantiated by an agent. The enumeration 'other' is applicable if the physical entity class is known, but does not match any of the supported values. The enumeration 'unknown' is applicable if the physical entity class is unknown to the agent. The enumeration 'chassis' is applicable if the physical entity class is an overall container for networking equipment. Any class of physical entity except a stack may be contained within a chassis, and a chassis may only be contained within a stack. The enumeration 'backplane' is applicable if the physical entity class is some sort of device for aggregating and forwarding networking traffic, such as a shared backplane in a modular ethernet switch. Note that an agent may model a backplane as a single physical entity, which is actually implemented as multiple discrete physical components (within a chassis or stack). The enumeration 'container' is applicable if the physical entity class is capable of containing one or more removable physical entities, possibly of different types. For example, each (empty or full) slot in a chassis will be modeled as a container. Note that all removable physical entities should be modeled within a container entity, such as field- replaceable modules, fans, or power supplies. Note that all known containers should be modeled by the agent, including empty containers. The enumeration 'powerSupply' is applicable if the physical entity class is a power-supplying component. The enumeration 'fan' is applicable if the physical entity class is a fan or other heat-reduction component. The enumeration 'sensor' is applicable if the physical entity class is some sort of sensor, such as a temperature sensor within a router chassis. The enumeration 'module' is applicable if the physical entity class is some sort of self-contained sub-system. If it is removable, then it should be modeled within a container entity, otherwise it should be modeled directly within another physical entity (e.g., a chassis or another module). The enumeration 'port' is applicable if the physical entity class is some sort of networking port, capable of receiving and/or transmitting networking traffic. The enumeration 'stack' is applicable if the physical entity class is some sort of super-container (possibly virtual), intended to group together multiple chassis entities. A stack may be realized by a 'virtual' cable, a real interconnect cable, attached to multiple chassis, or may in fact be comprised of multiple interconnect cables. A stack should not be modeled within any other physical entities, but a stack may be contained within another stack. Only chassis entities should be contained within a stack." SYNTAX INTEGER { other(1), unknown(2), chassis(3), backplane(4), container(5), -- e.g., chassis slot or daughter-card holder powerSupply(6), fan(7), sensor(8), module(9), -- e.g., plug-in card or daughter-card port(10), stack(11) -- e.g., stack of multiple chassis entities }SnmpEngineIdOrNone ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A specially formatted SnmpEngineID string for use with the Entity MIB. If an instance of an object of SYNTAX SnmpEngineIdOrNone has a non-zero length, then the object encoding and semantics are defined by the SnmpEngineID textual convention (see RFC 2571 [RFC2571]). If an instance of an object of SYNTAX SnmpEngineIdOrNone contains a zero-length string, then no appropriate SnmpEngineID is associated with the logical entity (i.e., SNMPv3 not supported)." SYNTAX OCTET STRING (SIZE(0..32)) -- empty string or SnmpEngineID-- The Physical Entity TableentPhysicalTable OBJECT-TYPE SYNTAX SEQUENCE OF EntPhysicalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table contains one row per physical entity. There is always at least one row for an 'overall' physical entity." ::= { entityPhysical 1 }entPhysicalEntry OBJECT-TYPE SYNTAX EntPhysicalEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a particular physical entity. Each entry provides objects (entPhysicalDescr, entPhysicalVendorType, and entPhysicalClass) to help an NMS identify and characterize the entry, and objects (entPhysicalContainedIn and entPhysicalParentRelPos) to help an NMS relate the particular entry to other entries in this table." INDEX { entPhysicalIndex } ::= { entPhysicalTable 1 }EntPhysicalEntry ::= SEQUENCE { entPhysicalIndex PhysicalIndex, entPhysicalDescr SnmpAdminString, entPhysicalVendorType AutonomousType, entPhysicalContainedIn INTEGER, entPhysicalClass PhysicalClass, entPhysicalParentRelPos INTEGER, entPhysicalName SnmpAdminString, entPhysicalHardwareRev SnmpAdminString, entPhysicalFirmwareRev SnmpAdminString, entPhysicalSoftwareRev SnmpAdminString, entPhysicalSerialNum SnmpAdminString, entPhysicalMfgName SnmpAdminString, entPhysicalModelName SnmpAdminString, entPhysicalAlias SnmpAdminString, entPhysicalAssetID SnmpAdminString, entPhysicalIsFRU TruthValue}entPhysicalIndex OBJECT-TYPE SYNTAX PhysicalIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The index for this entry." ::= { entPhysicalEntry 1 }entPhysicalDescr OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-only STATUS current DESCRIPTION "A textual description of physical entity. This object should contain a string which identifies the manufacturer's name for the physical entity, and should be set to a distinct value for each version or model of the physical entity. " ::= { entPhysicalEntry 2 }entPhysicalVendorType OBJECT-TYPE SYNTAX AutonomousType MAX-ACCESS read-only STATUS current DESCRIPTION "An indication of the vendor-specific hardware type of the physical entity. Note that this is different from the definition of MIB-II's sysObjectID. An agent should set this object to a enterprise-specific registration identifier value indicating the specific equipment type in detail. The associated instance of entPhysicalClass is used to indicate the general type of hardware device. If no vendor-specific registration identifier exists for this physical entity, or the value is unknown by this agent, then the value { 0 0 } is returned." ::= { entPhysicalEntry 3 }entPhysicalContainedIn OBJECT-TYPE SYNTAX INTEGER (0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The value of entPhysicalIndex for the physical entity which 'contains' this physical entity. A value of zero indicates this physical entity is not contained in any other physical entity. Note that the set of 'containment' relationships define a strict hierarchy; that is, recursion is not allowed. In the event a physical entity is contained by more than one physical entity (e.g., double-wide modules), this object should identify the containing entity with the lowest value of entPhysicalIndex." ::= { entPhysicalEntry 4 }entPhysicalClass OBJECT-TYPE SYNTAX PhysicalClass MAX-ACCESS read-only STATUS current DESCRIPTION "An indication of the general hardware type of the physical entity. An agent should set this object to the standard enumeration value which most accurately indicates the general class of the physical entity, or the primary class if there is more than one. If no appropriate standard registration identifier exists for this physical entity, then the value 'other(1)' is returned. If the value is unknown by this agent, then the value 'unknown(2)' is returned." ::= { entPhysicalEntry 5 }entPhysicalParentRelPos OBJECT-TYPE SYNTAX INTEGER (-1..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "An indication of the relative position of this 'child' component among all its 'sibling' components. Sibling components are defined as entPhysicalEntries which share the same instance values of each of the entPhysicalContainedIn and entPhysicalClass objects. An NMS can use this object to identify the relative ordering for all sibling components of a particular parent (identified by the entPhysicalContainedIn instance in each sibling entry). This value should match any external labeling of the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -