📄 effective.m
字号:
function [vre,dvrevs,dvrevp] = effective(freq,vr,group,energy,z,r,dvrvs,dvrvp,offsets,s_depth,r_depth)
% This function calculates the effective vertical phase velocities resulting
% from the superposition of the complex-valued modal phase velocities.
% Only the case of a vertical point load (i.e., Fxx = Fyy = 0) is considered. The
% algorithm is based on Eqs. 3.46 and 3.57 of Lai (1998).
% Copyright 1999 by Glenn J. Rix and Carlo G. Lai
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
% Determine the number of layers
[m n p] = size(dvrvs);
% Initialize matrices for the effective vertical velocities and their derivatives
vre = zeros(length(freq),length(offsets));
dvrevs = zeros(length(freq),length(offsets),p);
dvrevp = zeros(length(freq),length(offsets),p);
% Define the vector of circular frequencies
om = 2*pi*freq;
% Loop through the frequencies
for j = 1:length(freq)
% Calculate the position of the source and receiver
index = find(z(:,j) >= s_depth);
s_index = index(1);
index = find(z(:,j) >= r_depth);
r_index = index(1);
% Determine the number of modes at each frequency
index = find(vr(j,:));
m = length(index);
% Initialize matrices
A = zeros(m); B = zeros(m); Lambda = zeros(m); Sigma = zeros(m); Chi = zeros(m); Eta = zeros(m);
E1 = zeros(m,m,p); E2 = zeros(m,m,p);
% Assign displacement vectors, velocities, and energy integrals to local variables
r2r = squeeze(r(j,index,r_index,2));
r2s = squeeze(r(j,index,s_index,2));
V = squeeze(vr(j,index));
U = squeeze(group(j,index));
I1 = squeeze(energy(j,index));
% Loop through the offsets
for n = 1:length(offsets)
% Terms in Eqs. 3.46
for m1 = 1:length(index)
for m2 = 1:length(index)
Psiy = (r2r(m1)*r2r(m2)*r2s(m1)*r2s(m2))/(U(m1)*I1(m1)*U(m2)*I1(m2));
B(m1,m2) = Psiy*cos(om(j)*offsets(n)*(1/V(m1)-1/V(m2)))/sqrt(V(m1)*V(m2));
A(m1,m2) = B(m1,m2)*(1/V(m1)+1/V(m2));
C = sin(om(j)*offsets(n)*(1/V(m1)-1/V(m2)));
D = cos(om(j)*offsets(n)*(1/V(m1)-1/V(m2)));
Lambda(m1,m2) = Psiy*(2*om(j)*offsets(n)*C - V(m1)*D)*...
V(m2)^2/(2*(V(m1)*V(m2))^2*sqrt(V(m1)*V(m2)));
Sigma(m1,m2) = Psiy*(2*om(j)*offsets(n)*C + V(m2)*D)*...
V(m1)^2/(2*(V(m1)*V(m2))^2*sqrt(V(m1)*V(m2)));
Chi(m1,m2) = Psiy*(2*(om(j)*offsets(n)*V(m2)*C - V(m1)*V(m2)*...
D + om(j)*offsets(n)*V(m1)*C) - V(m1)*D*(V(m1)+V(m2)))*...
V(m2)^2/(2*(V(m1)*V(m2))^3*sqrt(V(m1)*V(m2)));
Eta(m1,m2) = Psiy*(2*(om(j)*offsets(n)*V(m2)*C + V(m1)*V(m2)*...
D + om(j)*offsets(n)*V(m1)*C) + V(m2)*D*(V(m1)+V(m2)))*...
V(m1)^2/(2*(V(m1)*V(m2))^3*sqrt(V(m1)*V(m2)));
end
end
% Equation B.12
A1 = sum(sum(A));
B1 = sum(sum(B));
% Equation 3.46
vre(j,n) = 2*B1/A1;
% Equation B.16
FF = 2*(A1*Lambda - B1*Chi)/A1^2;
GG = 2*(A1*Sigma - B1*Eta)/A1^2;
for m1 = 1:length(index)
for m2 = 1:length(index)
E1(m1,m2,:) = FF(m1,m2)*dvrvs(j,m1,:) - GG(m1,m2)*dvrvs(j,m2,:);
E2(m1,m2,:) = FF(m1,m2)*dvrvp(j,m1,:) - GG(m1,m2)*dvrvp(j,m2,:);
end
end
dvrevs(j,n,:) = shiftdim(sum(sum(E1,1),2),2);
dvrevp(j,n,:) = shiftdim(sum(sum(E2,1),2),2);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -