📄 pgtable.h
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 2001 by Ralf Baechle at alii * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. */#ifndef _ASM_PGTABLE_H#define _ASM_PGTABLE_H#include <asm/addrspace.h>#include <asm/page.h>#ifndef _LANGUAGE_ASSEMBLY#include <linux/linkage.h>#include <linux/config.h>#include <linux/mmzone.h>#include <asm/cachectl.h>/* Cache flushing: * * - flush_cache_all() flushes entire cache * - flush_cache_mm(mm) flushes the specified mm context's cache lines * - flush_cache_page(mm, vmaddr) flushes a single page * - flush_cache_range(mm, start, end) flushes a range of pages * - flush_page_to_ram(page) write back kernel page to ram */extern void (*_flush_cache_mm)(struct mm_struct *mm);extern void (*_flush_cache_range)(struct mm_struct *mm, unsigned long start, unsigned long end);extern void (*_flush_cache_page)(struct vm_area_struct *vma, unsigned long page);extern void (*_flush_page_to_ram)(struct page * page);#define flush_cache_all() do { } while(0)#define flush_dcache_page(page) do { } while (0)#ifndef CONFIG_CPU_R10000#define flush_cache_mm(mm) _flush_cache_mm(mm)#define flush_cache_range(mm,start,end) _flush_cache_range(mm,start,end)#define flush_cache_page(vma,page) _flush_cache_page(vma, page)#define flush_page_to_ram(page) _flush_page_to_ram(page)#define flush_icache_range(start, end) _flush_cache_l1()#define flush_icache_page(vma, page) \do { \ unsigned long addr; \ addr = (unsigned long) page_address(page); \ _flush_cache_page(vma, addr); \} while (0) #else /* !CONFIG_CPU_R10000 *//* * Since the r10k handles VCEs in hardware, most of the flush cache * routines are not needed. Only the icache on a processor is not * coherent with the dcache of the _same_ processor, so we must flush * the icache so that it does not contain stale contents of physical * memory. No flushes are needed for dma coherency, since the o200s * are io coherent. The only place where we might be overoptimizing * out icache flushes are from mprotect (when PROT_EXEC is added). */extern void andes_flush_icache_page(unsigned long);#define flush_cache_mm(mm) do { } while(0)#define flush_cache_range(mm,start,end) do { } while(0)#define flush_cache_page(vma,page) do { } while(0)#define flush_page_to_ram(page) do { } while(0)#define flush_icache_range(start, end) _flush_cache_l1()#define flush_icache_page(vma, page) \do { \ if ((vma)->vm_flags & VM_EXEC) \ andes_flush_icache_page(page_address(page)); \} while (0)#endif /* !CONFIG_CPU_R10000 *//* * The foll cache flushing routines are MIPS specific. * flush_cache_l2 is needed only during initialization. */extern void (*_flush_cache_sigtramp)(unsigned long addr);extern void (*_flush_cache_l2)(void);extern void (*_flush_cache_l1)(void);#define flush_cache_sigtramp(addr) _flush_cache_sigtramp(addr)#define flush_cache_l2() _flush_cache_l2()#define flush_cache_l1() _flush_cache_l1()/* * Each address space has 2 4K pages as its page directory, giving 1024 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a * pair of 4K pages, giving 1024 (== PTRS_PER_PMD) 8 byte pointers to * page tables. Each page table is a single 4K page, giving 512 (== * PTRS_PER_PTE) 8 byte ptes. Each pgde is initialized to point to * invalid_pmd_table, each pmde is initialized to point to * invalid_pte_table, each pte is initialized to 0. When memory is low, * and a pmd table or a page table allocation fails, empty_bad_pmd_table * and empty_bad_page_table is returned back to higher layer code, so * that the failure is recognized later on. Linux does not seem to * handle these failures very well though. The empty_bad_page_table has * invalid pte entries in it, to force page faults. * Vmalloc handling: vmalloc uses swapper_pg_dir[0] (returned by * pgd_offset_k), which is initalized to point to kpmdtbl. kpmdtbl is * the only single page pmd in the system. kpmdtbl entries point into * kptbl[] array. We reserve 1<<KPTBL_PAGE_ORDER pages to hold the * vmalloc range translations, which the fault handler looks at. */#endif /* !defined (_LANGUAGE_ASSEMBLY) *//* PMD_SHIFT determines the size of the area a second-level page table can map */#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3))#define PMD_SIZE (1UL << PMD_SHIFT)#define PMD_MASK (~(PMD_SIZE-1))/* PGDIR_SHIFT determines what a third-level page table entry can map */#define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + 1 - 3))#define PGDIR_SIZE (1UL << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))/* Entries per page directory level: we use two-level, so we don't really have any PMD directory physically. */#define PTRS_PER_PGD 1024#define PTRS_PER_PMD 1024#define PTRS_PER_PTE 512#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_PGD_NR 0#define KPTBL_PAGE_ORDER 1#define VMALLOC_START XKSEG#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define VMALLOC_END \ (VMALLOC_START + ((1 << KPTBL_PAGE_ORDER) * PTRS_PER_PTE * PAGE_SIZE))/* Note that we shift the lower 32bits of each EntryLo[01] entry * 6 bits to the left. That way we can convert the PFN into the * physical address by a single 'and' operation and gain 6 additional * bits for storing information which isn't present in a normal * MIPS page table. * * Similar to the Alpha port, we need to keep track of the ref * and mod bits in software. We have a software "yeah you can read * from this page" bit, and a hardware one which actually lets the * process read from the page. On the same token we have a software * writable bit and the real hardware one which actually lets the * process write to the page, this keeps a mod bit via the hardware * dirty bit. * * Certain revisions of the R4000 and R5000 have a bug where if a * certain sequence occurs in the last 3 instructions of an executable * page, and the following page is not mapped, the cpu can do * unpredictable things. The code (when it is written) to deal with * this problem will be in the update_mmu_cache() code for the r4k. */#define _PAGE_PRESENT (1<<0) /* implemented in software */#define _PAGE_READ (1<<1) /* implemented in software */#define _PAGE_WRITE (1<<2) /* implemented in software */#define _PAGE_ACCESSED (1<<3) /* implemented in software */#define _PAGE_MODIFIED (1<<4) /* implemented in software */#define _PAGE_R4KBUG (1<<5) /* workaround for r4k bug */#define _PAGE_GLOBAL (1<<6)#define _PAGE_VALID (1<<7)#define _PAGE_SILENT_READ (1<<7) /* synonym */#define _PAGE_DIRTY (1<<8) /* The MIPS dirty bit */#define _PAGE_SILENT_WRITE (1<<8)#define _CACHE_CACHABLE_NO_WA (0<<9) /* R4600 only */#define _CACHE_CACHABLE_WA (1<<9) /* R4600 only */#define _CACHE_UNCACHED (2<<9) /* R4[0246]00 */#define _CACHE_CACHABLE_NONCOHERENT (3<<9) /* R4[0246]00 */#define _CACHE_CACHABLE_CE (4<<9) /* R4[04]00 only */#define _CACHE_CACHABLE_COW (5<<9) /* R4[04]00 only */#define _CACHE_CACHABLE_CUW (6<<9) /* R4[04]00 only */#define _CACHE_CACHABLE_ACCELERATED (7<<9) /* R10000 only */#define _CACHE_MASK (7<<9)#define __READABLE (_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED)#define __WRITEABLE (_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED)#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED | _CACHE_MASK)#ifdef CONFIG_MIPS_UNCACHED#define PAGE_CACHABLE_DEFAULT _CACHE_UNCACHED#else /* ! UNCACHED */#ifdef CONFIG_SGI_IP22#define PAGE_CACHABLE_DEFAULT _CACHE_CACHABLE_NONCOHERENT#else /* ! IP22 */#define PAGE_CACHABLE_DEFAULT _CACHE_CACHABLE_COW#endif /* IP22 */#endif /* UNCACHED */#define PAGE_NONE __pgprot(_PAGE_PRESENT | PAGE_CACHABLE_DEFAULT)#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ PAGE_CACHABLE_DEFAULT)#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ PAGE_CACHABLE_DEFAULT)#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ PAGE_CACHABLE_DEFAULT)#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ PAGE_CACHABLE_DEFAULT)#define PAGE_USERIO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _CACHE_UNCACHED)#define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _CACHE_UNCACHED)/* * MIPS can't do page protection for execute, and considers that the same like * read. Also, write permissions imply read permissions. This is the closest * we can get by reasonable means.. */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_COPY#define __P011 PAGE_COPY#define __P100 PAGE_READONLY#define __P101 PAGE_READONLY#define __P110 PAGE_COPY#define __P111 PAGE_COPY#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED#define __S011 PAGE_SHARED#define __S100 PAGE_READONLY#define __S101 PAGE_READONLY#define __S110 PAGE_SHARED#define __S111 PAGE_SHARED#if !defined (_LANGUAGE_ASSEMBLY)#define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))#define pmd_ERROR(e) \ printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))#define pgd_ERROR(e) \ printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern unsigned long empty_zero_page;extern unsigned long zero_page_mask;#define ZERO_PAGE(vaddr) \ (virt_to_page(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask)))/* number of bits that fit into a memory pointer */#define BITS_PER_PTR (8*sizeof(unsigned long))/* to align the pointer to a pointer address */#define PTR_MASK (~(sizeof(void*)-1))/* * sizeof(void*) == (1 << SIZEOF_PTR_LOG2) */#define SIZEOF_PTR_LOG2 3/* to find an entry in a page-table */#define PAGE_PTR(address) \((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)];extern pte_t empty_bad_page_table[PAGE_SIZE/sizeof(pte_t)];extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];extern pmd_t empty_bad_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */extern inline unsigned long pmd_page(pmd_t pmd){ return pmd_val(pmd);}extern inline unsigned long pgd_page(pgd_t pgd){ return pgd_val(pgd);}extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep){ pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK);}extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp){ pgd_val(*pgdp) = (((unsigned long) pmdp) & PAGE_MASK);}extern inline int pte_none(pte_t pte){ return !pte_val(pte);}extern inline int pte_present(pte_t pte){ return pte_val(pte) & _PAGE_PRESENT;}/* * Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */extern inline void set_pte(pte_t *ptep, pte_t pteval){ *ptep = pteval;}extern inline void pte_clear(pte_t *ptep){ set_pte(ptep, __pte(0));}/* * (pmds are folded into pgds so this doesnt get actually called, * but the define is needed for a generic inline function.) */#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)/* * Empty pmd entries point to the invalid_pte_table. */extern inline int pmd_none(pmd_t pmd){ return pmd_val(pmd) == (unsigned long) invalid_pte_table;}extern inline int pmd_bad(pmd_t pmd){ return pmd_val(pmd) &~ PAGE_MASK;}extern inline int pmd_present(pmd_t pmd){ return pmd_val(pmd) != (unsigned long) invalid_pte_table;}extern inline void pmd_clear(pmd_t *pmdp){ pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);}/* * Empty pgd entries point to the invalid_pmd_table. */extern inline int pgd_none(pgd_t pgd){ return pgd_val(pgd) == (unsigned long) invalid_pmd_table;}extern inline int pgd_bad(pgd_t pgd){ return pgd_val(pgd) &~ PAGE_MASK;}extern inline int pgd_present(pgd_t pgd){ return pgd_val(pgd) != (unsigned long) invalid_pmd_table;}extern inline void pgd_clear(pgd_t *pgdp){ pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table);}/* * Permanent address of a page. On MIPS64 we never have highmem, so this * is simple. */#define page_address(page) ((page)->virtual)#ifndef CONFIG_DISCONTIGMEM#define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))#else#define mips64_pte_pagenr(x) \ (PLAT_NODE_DATA_STARTNR(PHYSADDR_TO_NID(pte_val(x))) + \ PLAT_NODE_DATA_LOCALNR(pte_val(x), PHYSADDR_TO_NID(pte_val(x))))#define pte_page(x) (mem_map+mips64_pte_pagenr(x))#endif/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */extern inline int pte_read(pte_t pte){ return pte_val(pte) & _PAGE_READ;}extern inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE;}extern inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_MODIFIED;}extern inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED;}extern inline pte_t pte_wrprotect(pte_t pte){ pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte;}extern inline pte_t pte_rdprotect(pte_t pte)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -